

曜凌光電股份有限公司

 住址: 42878 台中市大雅区科雅路 25 號 5F
 WEB: <u>http://www.Raystar-Optronics.com</u>

 5F., No.25, Keya Rd., Daya Dist., Taichung
 E-mail: sales@raystar-optronics.com

 City 428, Taiwan
 Tel:886-4-2565-0761
 Fax : 886-4-2565-0760

RX12864D2-BIW

SPECIFICATION

CUSTOMER:

APPROVED BY

PCB VERSION

DATE

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
Release DATE:			

Revision History

		_	
VERSION	DATE	REVISED PAGE NO.	Note
0	2011/10/12		First issue
A	2012/11/28		Modify note3 Modify bsolute
В	2014/11/14		Modify bsolute Maximum Ratings
			&VDD-VSS.

Contents

- 1.General Specification
- 2. Module Classification Information
- **3.Interface Pin Function**
- 4.Contour Drawing
- **5.Optical Characteristics**
- 6. Absolute Maximum Ratings
- **7.**Electrical Characteristics
- 8.Backlight Information
- 9.Reliability
- 10.Inspection specification
- 11.Precautions in use of LCD Modules
- 12. Material List of Components for RoHs
- 13.Recommendable Storage

1.General Specification

The Features of the Module is description as follow:

- Module dimension: 90.0 x 52.8 x 6.6 mm
- View area: 70.7 x 38.8 mm
- Active area: 66.52 x 33.24 mm
- Number of Dots: 128 x 64
- Dot size: 0.48 x0.48 mm
- Dot pitch: 0.52 x 0.52 mm
- LCD type: STN Negative, Blue Transmissive
- Duty: 1/64, 1/9 Bias
- View direction:6 o'clock
- Backlight Type: LED White
- IC: ST7565P

2.Module Classification Information

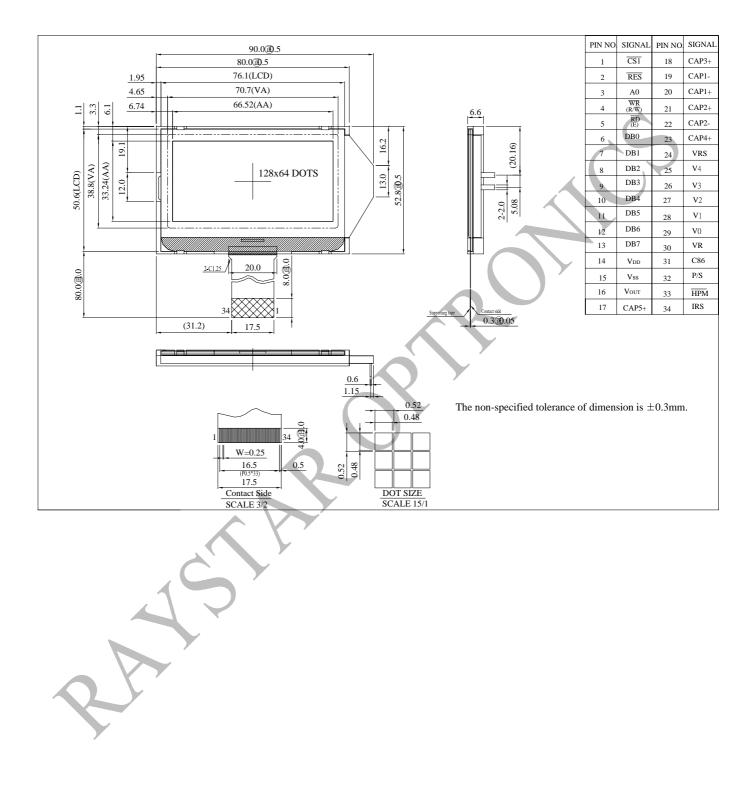
<u>R</u>	<u>X</u>	<u>12864</u>	<u>D2</u>	_	B	<u> </u>	W
1	2	3	4		5	6	\bigcirc

Item	n Description					
1	R : Raystar O	ptronics Inc.				
2	Display	C: Character Type,		Т:ТАВ Туре		
2	Display	G: Graphic Type		X:COG Type		
3	Display Font :	128 * 64 dot			(
4	Serials code :	r		r		
		P→TN Positive, Gray		V→FSTN Ne	egative, Blue	
		N→TN Negative,		T→FSTN Ne	egative, Black	
		L→VA Negative			egative (Double film)	
		$H \rightarrow HTN$ Positive, Gray		F→FSTN Po	ositive	
5	LCD	I→HTN Negative, Black		K→FSC Neg	gative	
		U→HTN Negative, Blue		S→FSC Pos		
		B→STN Negative, Blue		E→ISTN Ne	gative, Black	
		G→STN Positive, Gray		C→CSTN Negative, Black		
		Y→STN Positive, Yellow Green		A→ASTN Negative, Black		
		A : Reflective, N.T, 6:00		K : Transflective, W.T,12:00		
	Polarizer	D: Reflective, N.T, 12:0	0	1 : Transflective, U.T,6:00		
	Туре,	G: Reflective, W. T, 6:00	5	4 : Transflective, U.T.12:00		
	Temperature	J: Reflective, W. T, 12:0		C : Transmissive, N.T,6:00		
6	range,	0 : Reflective, U. T, 6:00		F: Transmissive, N.T,12:00		
	J	3: Reflective, U. T, 12:0		I: Transmissive, W. T, 6:00		
	View	B: Transflective, N.T,6:0			sive, W.T,12:00	
	direction	E : Transflective, N.T.12		2 : Transmissive, U. T, 6:00		
		H: Transflective, W.T,6:		5 : Transmissive, U.T,12:00		
		$N \rightarrow$ Without backlight	W→LE		H→LED, High light White	
		P→EL, Blue		, Amber	$S \rightarrow LED$, Full color	
		T→EL, Green	R→LED		$J \rightarrow DIP LED$, Blue	
7	Backlight), Orange	$K \rightarrow DIP LED, White$	
		M→EL, Yellow Green	B→LED		$E \rightarrow DIP LED$, Yellow	
		$F \rightarrow CCFL$, White		, Dual color	$L \rightarrow DIP LED, Amber$	
		Y→LED, Yellow Green	C→LED	, Full color	$I \rightarrow DIP LED, Red$	
		G→LED, Green				

3.Interface Pin Function

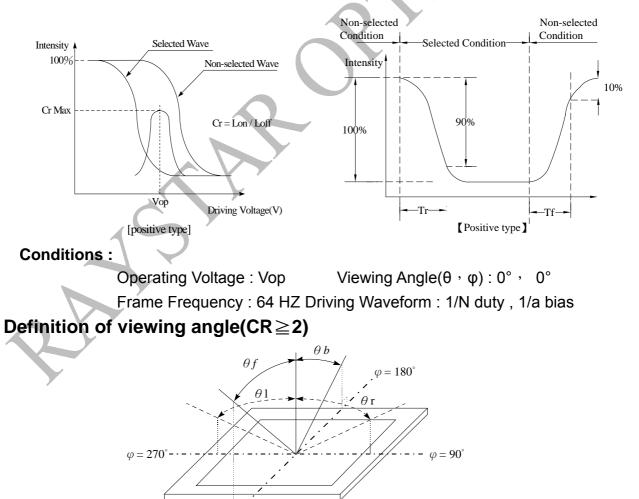
Pin No.	Symbol	Level	Description
			This is the chip select signal. When /CS1 = "L" , then the
1	/CS1		chip select becomes active, and data/command I/O is
			enabled.
2	/RES		When /RES is set to "L" , the settings are initialized.
			This is connect to the least significant bit of the normal
			MPU address bus, and it determines whether the data
3	A0		bits are data or a command.
			A0 = "H": Indicates that D0 to D7 are display data.
			A0 = "L": Indicates that D0 to D7 are control data.
			When connected to an 8080 MPU, this is active LOW.
			(R/W) This terminal connects to the 8080 MPU /WR
			signal. The signals on the data bus are latched at the
4	/WR(R/W)		rising edge of the /WR signal.
			When connected to a 6800 Series MPU:
			This is the read/write control signal input terminal.
			When $R/W = "H"$: Read.
			When R/W = "L": Write. When connected to an 8080 MPU, this is active LOW.
			(E) This pin is connected to the /RD signal of the 8080
		\mathbf{x}	MPU, and the ST7565P series data bus is in an output
5	/RD(E)		status when this signal is "L".
			When connected to a 6800 Series MPU, this is active
			HIGH.
			This is the 6800 Series MPU enable clock input terminal.
6	DB0		
7	DB1		
8	DB2		
9	DB3		This is an 8-bit bi-directional data bus that connects to an
10	DB4		8-bit or 16-bit standard MPU data Bus.
11	DB5		
12	DB6		
13	DB7		

RAYSTAR	


14	VDD	Shared with the MPU power supply terminal VDD. (3.3 V)
15	VSS	This is a 0V terminal connected to the system GND.
16	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
17	CAP5+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
18	CAP3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
19	CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.
20	CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
21	CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
22	CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.
23	CAP4+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
24	VRS	This is the externally-input VREG power supply for the LCD power supply voltage regulator.
25	V4	This is a multi-level power supply for the liquid crystal
26	V3	drive. The voltage Supply applied is determined by the
27	V2	liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the
28	V1	Voltage levels are determined based on Vss, and must
29	VO	maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge Vss$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. $\frac{1/65 \text{ DUTY} 1/49 \text{ DUTY} 1/33 \text{ DUTY} 1/55 \text{ DUTY} 1/53 \text{ DUTY}}{1/55 \text{ DUTY} 1/53 \text{ DUTY}}$ $\frac{1/65 \text{ DUTY} 1/49 \text{ DUTY} 1/33 \text{ DUTY} 1/55 \text{ DUTY} 1/53 \text{ DUTY}}{1/53 \text{ DUTY} 1/53 \text{ DUTY}}$ $\frac{1/65 \text{ DUTY} 1/49 \text{ DUTY} 1/33 \text{ DUTY} 1/55 \text{ DUTY} 1/53 \text{ DUTY}}{1/53 \text{ DUTY} 0.5/6*V0}$ $\frac{1/65 \text{ DUTY} 1/49 \text{ DUTY} 1/33 \text{ DUTY} 1/55 \text{ DUTY} 0.5/6*V0}{1/8*V0.5/6*V0} 0.6/8*V0.4/6*V0}$ $\frac{1/6}{2} (2/9*V0.2/7*V0) 0.6/8*V0.4/6*V0}{2/8*V0.2/6*V0} 0.6/8*V0.4/6*V0} 0.6/8*V0.4/6*V0}{2/8*V0.2/6*V0} 0.6/8*V0.2/6*V0} 0.6/8*V0.2/6*V0}$
		V1 8/9*V0,6/7*V0 7/8*V0,5/6*V0 5/6*V0,4/5*V0 7/8*V0,5/6*V0 7/8*V0,5 V2 7/9*V0,5/7*V0 6/8*V0,4/6*V0 4/6*V0,3/5*V0 6/8*V0,4/6*V0 6/8*V0,4

30	VR	Output voltage regulator terminal. Provides the voltage between VDD and V5 through a resistive voltage divider. IRS = "L" : the V5 voltage regulator internal resistors are not used . IRS = "H" : the V5 voltage regulator internal resistors are used .
31	C86	This is the MPU interface switch terminal. C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 MPU interface.
32	P/S	This is the parallel data input/serial data input switch terminal. P/S = "H": Parallel data input. P/S = "L": Serial data input. The following applies depending on the P/S status: $\frac{P/S}{Data/Command} \frac{Data Read/Write Serial Clock}{RE (HT A0 D0 to D7 RE WR X)}$ When P/S = "L", D0 to D5 may be "H", "L" or Open. RD (E) and WR (R/W) are fixed to either "H" or "L". With serial data input, It is impossible read data from RAM.
33	/HPM	This is the power control terminal for the power supply circuit for liquid crystal drive. HPM = "H": Normal mode HPM = "L": High power mode
34	IRS	 This terminal selects the resistors for the V5 voltage level adjustment. IRS = "H": Use the internal resistors IRS = "L": Do not use the internal resistors. The V5 voltage level is regulated by an external resistive voltage divider attached to the VR terminal

4.Contour Drawing



5.Optical Characteristics

ltem	Symbol	Condition	Min	Тур	Мах	Unit
	θ	CR≧2	0		20	ψ= 180°
View Angle	θ	CR≧2	0		40	ψ= 0°
View Angle	θ	CR≧2	0	—	30	ψ= 90°
	θ	CR≧2	0	_	30	ψ= 270°
Contrast Ratio	CR		_	3		
Deenenee Time	T rise		_	200	300	ms
Response Time	T fall	_		250	350	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)

 $\varphi = 0^{\circ}$

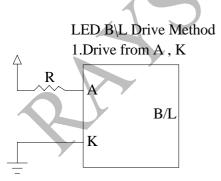
6.Absolute Maximum Ratings

ltem	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20	_	+70	°C
Storage Temperature	T _{ST}	-30	_	+80	°C
Power Supply Voltage	VDD	-0.3		3.6	V
Power supply voltage (VDD standard)	V0, VOUT	-0.3	-	14.5	V
Power supply voltage (VDD standard)	V1, V2, V3, V4	-0.3	\bigcirc	V0+0.3	V

7.Electrical Characteristics

ltem	Symbol	Condition	Min	Тур	Мах	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	_	2.7	3.0	3.3	V
		Ta=-20 ℃	10.0	10.2	10.4	V
Supply Voltage For LCM	V_0 - V_{SS}	Ta=25 ℃	9.8	10.0	10.2	V
*NOTE		Ta=70 ℃	9.6	9.8	10.0	V
Input High Volt.	V _{IH}	_	0.8 V _{DD}	٢ (V _{DD}	V
Input Low Volt.	V _{IL}	_	Vss	_	$0.2 V_{DD}$	V
Output High Volt.	V _{OH}	—	0.8 V _{DD}		V _{DD}	V
Output Low Volt.	V _{OL}	-	Vss	_	$0.2V_{DD}$	V
Supply Current(No	I		×	0.6	4	
include LED Backlight)	I _{DD}	V _{DD} =3.0V		0.6	1	mA

NOTE: Please kindly consider to design the Vop to be adjustable while programing the software to match LCD contrast tolerance


8.Backlight Information

Specification

PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNIT	TEST CONDITION
Supply Current	ILED	14.4	16	25	mA	V=3.5V
Supply Voltage	V	3.4	3.5	3.6	v	-
Reverse Voltage	VR	_	_	5	v	-
Luminance	IV	75	95			ILED=16mA
(Without LCD)	IV	75	90		CD/M	
LED Life Time						ILED=16mA
(For Reference	_	_	50K		Hr.	25℃,50-60%RH,
only)				X	T.	(Note 1)
Color	White)		

Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

Note 1:50K hours is only an estimate for reference.

9.Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

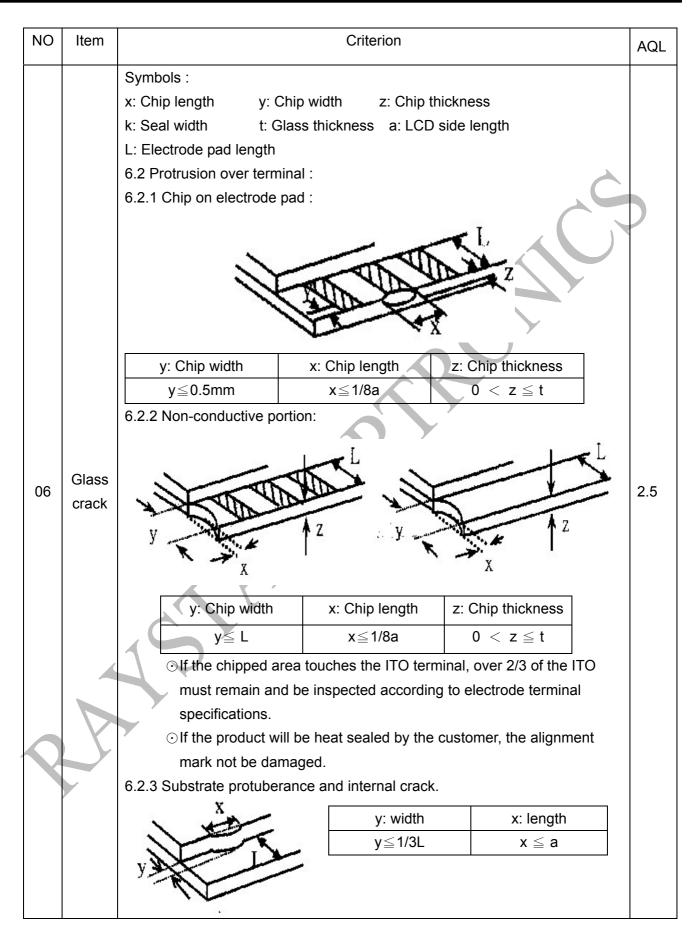
	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	200hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30℃ 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1
High Temperature/ Humidity storage	The module should be allowed to stand at 60°C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60℃,90%RH 96hrs	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20℃/70℃ 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.


10.Inspection specification

NO	Item			Criterion		AQL
		1.1 Missing verti defect.	ical, horizo	ontal segment, seg	ment contrast	
		1.2 Missing char	racter , do	t or icon.		
	Electrical	1.3 Display malf	unction.			
01	Testing	1.4 No function	or no displ	lay.	C	0.65
	reating	1.5 Current cons	sumption e	exceeds product sp	pecifications.	\Box
		1.6 LCD viewing	angle def	fect.		
		1.7 Mixed produ	ct types.			
		1.8 Contrast def				
	Black or white		•	on display ≤ 0.25	mm, no more than	
02	spots on LCD	three white c	•		Y	2.5
	(display only)	2.2 Densely spa	ced: No m	nore than two spots	s or lines within 3mm	
		2.1 Downd two				
		3.1 Round type Φ=(x + y) /				
		$\Psi = (x + y)/$	2	SIZE	Acceptable Q TY	
		⊢ → A ^ˆ M→ →		Φ≦0.10	Accept no dense	2.5
			v	0.10<Φ≦0.20	2	
	LCD black	-	т –	0.20<Φ≦0.25	1	
	spots, white			0.25<Φ	0	
03	spots,		A . f. II			
	contamination	3.2 Line type : (/				
	(non-display)	(Length	Width	Acceptable Q TY	
				W≦0.02	Accept no dense	
		→ <u></u> +	L≦3.0	$0.02 < W \le 0.03$ $0.03 < W \le 0.05$	2	2.5
			L≦2.5			
				0.05 <w< td=""><td>As round type</td><td></td></w<>	As round type	
	Y					
	1	If bubbles are vi	sible.	Size Φ	Acceptable Q TY	
		judge using blac		Φ≦0.20	Accept no dense	
04	Polarizer	specifications, n	•	$0.20 \! < \! \Phi \! \le \! 0.50$	3	2.5
	bubbles	to find, must che	•	$0.50 \! < \! \Phi \! \le \! 1.00$	2	
		specify direction	I.	1.00<Ф	0	
				Total Q TY	3	

NO	Item		Criterion		AQL
05	Scratches	Follow NO.3 LCD black	spots, white spots, con	tamination	
		Symbols Define:			
		x: Chip length y:	Chip width z: Chip	thickness	
		k: Seal width t: 0	Glass thickness a: LCE) side length	
		L: Electrode pad length	:		
				C	
		6.1 General glass chip	:		D
		6.1.1 Chip on panel sur	face and crack between	panels:	
		z: Chip thickness	y: Chip width	x: Chip length	
06	Chipped	Z≦1/2t	Not over viewing area	x≦1/8a	2.5
	glass	$1/2t < z \le 2t$	Not exceed 1/3k	x≦1/8a	2.0
		⊙ If there are 2 or more	chips, x is total length c	of each chip.	
	4	6.1.2 Corner crack:	X	у	
		z: Chip thickness	y: Chip width	x: Chip length	
		Z≦1/2t	Not over viewing area	x≦1/8a	
		$1/2t < z \leq 2t$	Not exceed 1/3k	x≦1/8a	
		\odot If there are 2 or more	e chips, x is the total leng	yth of each chip.	

RAYSTAR

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
		8.1 Illumination source flickers when lit.	0.65
08	Backlight	8.2 Spots or scratched that appear when lit must be judged.	2.5
00	elements	Using LCD spot, lines and contamination standards.	
		8.3 Backlight doesn't light or color wrong.	0.65
		9.1 Bezel may not have rust, be deformed or have fingerprints,	2.5
09	Bezel	stains or other contamination.	0.65
		9.2 Bezel must comply with job specifications.	0.00
		10.1 COB seal may not have pinholes larger than 0.2mm or	
		contamination.	2.5
		10.2 COB seal surface may not have pinholes through to the IC.	
		10.3 The height of the COB should not exceed the height	2.5
		indicated in the assembly diagram.	0.65
		10.4 There may not be more than 2mm of sealant outside the	
		seal area on the PCB. And there should be no more than	2.5
		three places. 10.5 No oxidation or contamination PCB terminals.	
10	PCB · COB	10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts,	2.5
		missing parts or excess parts.	0.65
		10.7 The jumper on the PCB should conform to the product	
		characteristic chart.	
		10.8 If solder gets on bezel tab pads, LED pad, zebra pad or	0.65
		screw hold pad, make sure it is smoothed down.	
		10.9 The Scraping testing standard for Copper Coating of PCB	2.5
		X	2.5
		X * Y<=2mm2	
	r	11.1 No un-melted solder paste may be present on the PCB.	2.5
		11.2 No cold solder joints, missing solder connections, oxidation	2.5
11	Soldering	or icicle.	
		11.3 No residue or solder balls on PCB.	2.5
		11.4 No short circuits in components on PCB.	0.65

NO	Item	Criterion	AQL
		12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP.	2.5
		12.2 No cracks on interface pin (OLB) of TCP.	0.65
		12.3 No contamination, solder residue or solder balls on product.	2.5
		12.4 The IC on the TCP may not be damaged, circuits.	2.5
		12.5 The uppermost edge of the protective strip on the interface	2.5
		pin must be present or look as if it cause the interface pin to	
	General	sever.	2.5
12	appearance	12.6 The residual rosin or tin oil of soldering (component or chip	
		component) is not burned into brown or black color.	2.5
		12.7 Sealant on top of the ITO circuit has not hardened.	0.65
		12.8 Pin type must match type in specification sheet.	0.65
		12.9 LCD pin loose or missing pins.	0.65
		12.10 Product packaging must the same as specified on	
		packaging specification sheet.	0.65
		12.11 Product dimension and structure must conform to product specification sheet.	
		12.12 Visual defect outside of VA is not considered to be rejection.	

11.Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.
- (8) Raystar have the right to change the passive components, including R3,R6 & backlight adjust resistors. (Resistors,capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (9)Raystar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Raystar have the right to modify the version.)

12.Material List of Components for RoHs

1. RAYSTAR Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A : The Harmful Material List

	-					
Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited	100	1000	1000	1000	1000	1000
Value	ppm	ppm	ppm	ppm	ppm	ppm
Above limit	ted value is	set up acco	ording to Ro	oHS.		

- 2.Process for RoHS requirement :
 - (1) Use the Sn/Ag/Cu soldering surface ; the surface of Pb-free solder is rougher than we used before.
 - (2) Heat-resistance temp. :

Reflow : 250°C,30 seconds Max. ;

Connector soldering wave or hand soldering : 320° C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235 \pm 5 $^{\circ}$ C ;

Recommended customer's soldering temp. of connector $: 280^{\circ}$ C, 3 seconds.

13.Recommendable Storage

- 1. Place the panel or module in the temperature 25°C±5°C and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

Page: 1

	LCM Sample	e Estimate Feedback Sheet
Module Number :		
1 · Panel Specification :		
1. Panel Type:	Pass	□ NG ,
2. View Direction :	Pass	□ NG ,
3. Numbers of Dots :	Pass	□ NG ,
4. View Area :	Pass	□ NG ,
5. Active Area :	Pass	□ NG ,
6.Operating Temperature :	Pass	□ NG ,
7.Storage Temperature :	Pass	□ NG ,
8.Others :		
2 · Mechanical Specification :		
1. PCB Size :	Pass	□ NG ,
2.Frame Size :	Pass	□ NG ,
3.Materal of Frame :	□ Pass	□ NG ,
4.Connector Position :	Pass	□ NG ,
5.Fix Hole Position :	□ Pass	🗆 NG ,
6.Backlight Position :	Pass	□ NG ,
7. Thickness of PCB :	Pass	□ NG ,
8. Height of Frame to PCB :	Pass	□ NG ,
9.Height of Module :	Pass	□ NG ,
10.Others:	Pass	□ NG ,
3 · <u>Relative Hole Size</u> :		
1.Pitch of Connector :	Pass	□ NG ,
2.Hole size of Connector :	Pass	□ NG ,
3.Mounting Hole size :	Pass	□ NG ,
4.Mounting Hole Type :	Pass	□ NG ,
5.Others :	Pass	□ NG ,
4 · Backlight Specification :		
1.B/L Type:	Pass	□ NG ,
2.B/L Color :	Pass	□ NG ,
3.B/L Driving Voltage (Referen	nce for LED Ty	/pe):□ Pass □ NG ,
4.B/L Driving Current :	Pass	□ NG ,
5.Brightness of B/L :	Pass	□ NG ,
6.B/L Solder Method :	Pass	□ NG ,
7.Others:	Pass	□ NG ,

>> Go to page 2 <<

		Page: 2
Module Number :		
5 · Electronic Characteristics of	Module :	
1.Input Voltage :	Pass	□ NG ,
2.Supply Current :	Pass	□ NG ,
3.Driving Voltage for LCD :	Pass	□ NG ,
4.Contrast for LCD :	Pass	□ NG ,
5.B/L Driving Method :	Pass	□ NG ,
6.Negative Voltage Output :	Pass	□ NG ,
7.Interface Function :	Pass	□ NG ,
8.LCD Uniformity :	Pass	□ NG ,
9.ESD test :	Pass	🗆 NG ,
10.Others :	Pass	🗆 NG ,
	R	

Sales signature : _____ Customer Signature : _____

|--|