

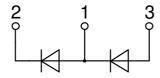
High Voltage Standard Rectifier Module

= 2x 2800 V

240 A

 V_{F} 1.01 V

Phase leg


Part number

MDD175-28N1

Backside: isolated

F1 E72873

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very low forward voltage drop
- Improved thermal behaviour

Applications:

- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: Y1

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

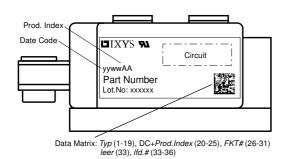
to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

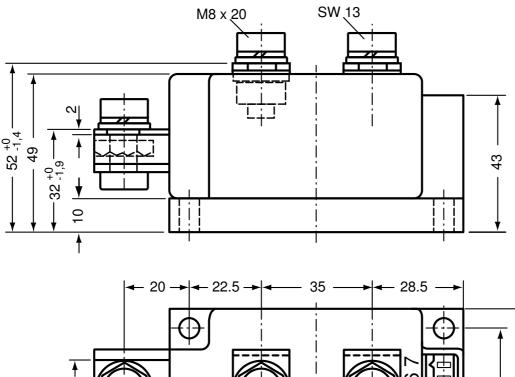
Data according to IEC 60747 and per semiconductor unless otherwise specified

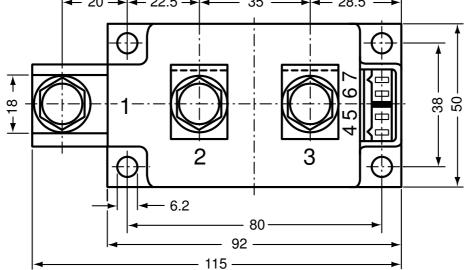
20130813g



			l	Ratings	S	
Definition	Conditions		min.	typ.	max.	Unit
max. non-repetitive reverse blocking voltage		$T_{VJ} = 25^{\circ}C$			2900	V
max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			2800	V
reverse current	V _R = 2800 V	$T_{VJ} = 25^{\circ}C$			1	mA
	$V_R = 2800 \text{ V}$	$T_{VJ} = 150$ °C			5	mA
forward voltage drop	I _F = 200 A	$T_{VJ} = 25^{\circ}C$			1.07	V
	$I_F = 400 A$				1.26	٧
	$I_F = 200 \text{ A}$	T _{VJ} = 125°C			1.01	V
	$I_F = 400 A$				1.26	٧
average forward current	T _C = 100°C	T _{vJ} = 150°C			240	Α
	180° sine $d = 0.5$					
threshold voltage		T _{vJ} = 150°C			0.74	V
slope resistance } for power	loss calculation only				1.27	mΩ
thermal resistance junction to ca	ase				0.14	K/W
thermal resistance case to heats	sink			0.04		K/W
total power dissipation		$T_{C} = 25^{\circ}C$			900	W
max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			8.50	kA
	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			9.18	kA
	t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			7.23	kA
	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			7.81	kA
value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			361.3	kA2s
	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			350.6	kA2s
	t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			261.0	kA2s
	t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			253.4	kA2s
junction capacitance	V _R = 1100 V; f = 1 MHz	$T_{VJ} = 25^{\circ}C$		182		pF
	max. non-repetitive reverse blocking max. repetitive reverse blocking reverse current forward voltage drop average forward current threshold voltage slope resistance junction to ca thermal resistance case to heats total power dissipation max. forward surge current value for fusing	$\begin{array}{c} \textit{max. non-repetitive reverse blocking voltage} \\ \textit{max. repetitive reverse blocking voltage} \\ \textit{reverse current} & V_{\text{R}} = 2800 \text{ V} \\ V_{\text{R}} = 2800 \text{ V} \\ \hline \textit{forward voltage drop} & I_{\text{F}} = 200 \text{ A} \\ I_{\text{F}} = 400 \text{ A} \\ \hline \textit{I}_{\text{F}} = 400 \text{ A} \\ \hline \textit{I}_{\text{F}} = 400 \text{ A} \\ \hline \textit{average forward current} & T_{\text{C}} = 100^{\circ}\text{C} \\ \hline \textit{180}^{\circ} \text{ sine} & d = 0.5 \\ \hline \textit{threshold voltage slope resistance} & \textit{for power loss calculation only} \\ \hline \textit{thermal resistance junction to case} \\ \hline \textit{thermal resistance case to heatsink} \\ \hline \textit{total power dissipation} \\ \hline \textit{max. forward surge current} & t = 10 \text{ ms; } (50 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline \textit{t} = 8,3 \text{ ms; } (60 \text{ Hz}), \text{ sine} \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

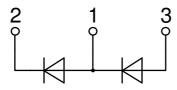
Package Y1				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				600	Α
T _{VJ}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					680		g
M _D	mounting torque			4.5		7	Nm
$\mathbf{M}_{_{T}}$	terminal torque			11		13	Nm
d _{Spp/App}	reepage distance on surface striking distance through air	terminal to terminal	16.0			mm	
$d_{Spb/Apb}$	creepage distance on surface / striking dis	ance trirough air	terminal to backside	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA 4800 4000	4800			V
.002		t = 1 minute				٧	




Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDD175-28N1	MDD175-28N1	Box	3	504295

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.74		V
$R_{0 \; \text{max}}$	slope resistance *	0.75		$m\Omega$

Outlines Y1



Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red

Type ZY 180L (L = Left for pin pair 4/5) Type ZY 180R (R = Right for pin pair 6/7) UL 758, style 3751

Rectifier

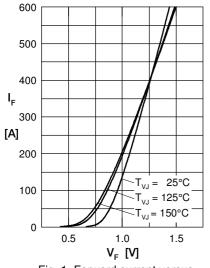


Fig. 1 Forward current versus voltage drop per diode

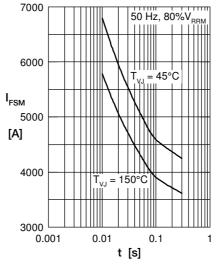


Fig. 2 Surge overload current

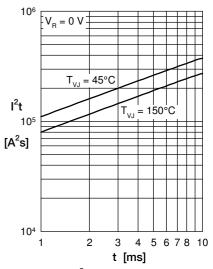


Fig. 3 I²t versus time per diode

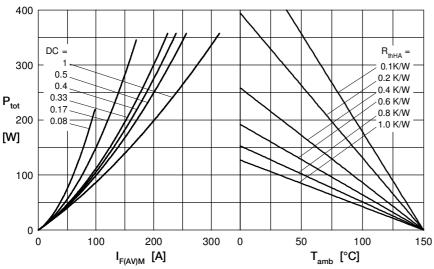


Fig. 4 Power dissipation vs. direct output current and ambient temperature

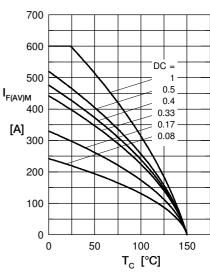


Fig. 5 Max. forward current vs. case temperature

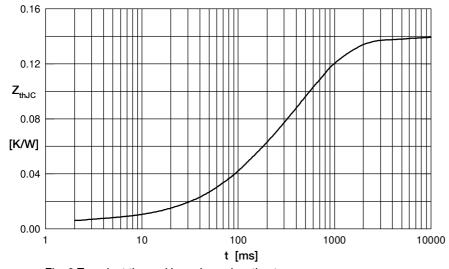


Fig. 6 Transient thermal impedance junction to case

Constants for $Z_{\rm thJC}$ calculation:

i	R_{thi} (K/W)	t _i (s)
1	0.155	0.0005
2	0.332	0.0095
3	0.713	0.17
4	0.3	8.0
5	0.00001	0.00001