

1W Blue High Power LED Technical Data Sheet

Part No.: LL-HP60MBB

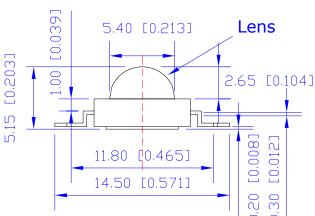
Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 1 OF 8

Approved: JoJo Checked: Wu Drawn: Yao

Features:

- ♦ Very long operating life (up to 100k hours).
- ♦ Available in white, green, blue, red, yellow.
- ♦ More energy efficient than incandescent and most halogen lamps.
- ♦Low voltage DC operated.
- ♦ Cool beam, safe to the touch.
- ♦Instant light (less than 100 ns).
- ♦ The product itself will remain within RoHS compliant Version.

Applications:


- ◇Reading lights (car, bus, aircraft).
- ◇Portable (flashlight, bicycle).
- ♦ Mini_accent/Uplighters/Downlighters/Orientation.
- ♦ Bollards/Security/Garden.
- ♦ Cove/Undershelf/Task.
- ♦ Automotive rear combination lamps.
- ♦ Traffic signaling/Beacons/ Rail crossing and Wayside.
- ♦ Indoor/Outdoor Commercial and Residential Architectural.
- ♦ Edge_lit signs (Exit, point of sale).
- ♦LCD Backlights/Light Guides.

Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 2 OF 8 Approved: JoJo Checked: Wu Drawn: Yao

Mechanical Dimensions:

Part No.	Chip Material	Source Color
LL-HP60MBB	InGaN	Blue

Notes:

1. All dimensions are in millimeters.

2. Tolerance is \pm 0.25 mm (.010") unless otherwise noted.

Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 3 OF 8

Approved: JoJo Checked: Wu Drawn: Yao

Absolute Maximum Ratings at Ta=25℃

Parameters	Symbol	Rating	Units
Forward Current	I F 350		mA
PeakPulseCurrent (tp≤100μs, Duty cycle=0.25)	I pulse	700	mA
Reverse Voltage	V R 5		V
LED Junction Temperature	T j	125	${\mathbb C}$
Operating Temperature Range	T opr	-40 to +80	${\mathbb C}$
Storage Temperature Range	T stg -40 to +100		${\mathbb C}$
Soldering Time at 260 ℃ (Max.)	T sol 5		Seconds

Notes:

- 1. Proper current derating must be observed to maintain junction temperature below the maximum.
- 2. LEDs are not designed to be driven in reserve bias.

Electrical Optical Characteristics at Ta=25℃

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Viewing Angle [1]	2θ _{1/2}		135		Deg	IF=350mA
Forward Voltage [2]	V _F	2.8	3.5	4.0	V	IF=350mA
Reverse Current	\boldsymbol{I}_R			10	μΑ	V _R =5V
Peak Emission Wavelength	/ p		450		nm	IF=350mA
Dominant Wavelength	λ d		465		nm	IF =350mA
Spectrum Radiation Bandwidth	Δλ		15		nm	IF=350mA
Luminous Flux	Фи	10	15		lm	IF=350mA

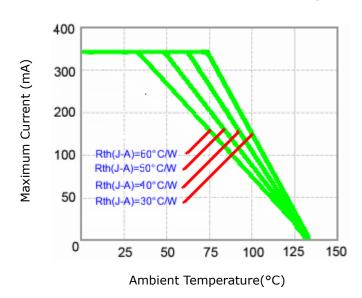
Notes:

- 1. $2\theta 1/2$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value.
- 2. Forward Voltage measurement tolerance: ±0.1V

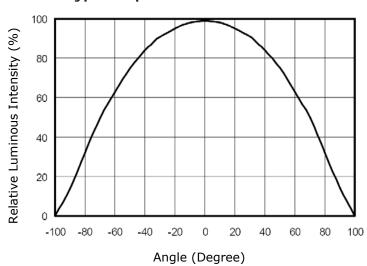
Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 4 OF 8

Approved: JoJo Checked: Wu Drawn:Yao

Typical Electrical / Optical Characteristics Curves (25℃ Ambient Temperature Unless Otherwise Noted) **Relative Spectral Distribution** Relative Luminous Intensity (%) Wavelength (nm) **Forward Current VS Forward Voltage** Forward Current (mA) 1.0 2.0 3.0 4.0 5.0 Forward Voltage (V) **Luminous Flux VS Forward** Relative Luminous Flux (%)


Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 5 OF 8 Approved: JoJo Checked: Wu Drawn: Yao

Forward Current (mA)



Typical Electrical-Optical Characteristics Curves

Maximum Current VS Ambient Temperature

Typical Spatial Radiation Pattern

Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Approved: JoJo Checked: Wu Drawn: Yao

Lucky Light Electronics Co., Ltd. http://www.luckylightled.com

Page: 6 OF 8

Precautions For Use:

1. Over-current-proof

Though HP60M has conducted ESD protection mechanism, customer must not use the device in reverse and should apply resistors for extra protection. Otherwise slight voltage shift may cause enormou current change and burn out failure would happen.

2. Storage

- ① Do not open moisture proof bag before the products are ready to use.
- ② Before opening the package, the LEDs should be kept at 30℃ or less and 90%RH or less.
- ③ The LEDs should be used within a year.
- ④ After opening the package, the LEDs should be kept at 30°C or less and 70%RH or less.
- ⑤ The LEDs should be used within 168 hours (7 days) after opening the package.
- ⑥If the moisture absorbent material (silicone gel) has faded away or the LEDs have exceeded the storag time, baking treatment should be performed using the following conditions.
- ⑦ Pre-curing treatment: 60±5℃ for 24 hours.

3. Thermal Management

- ① Because HP60M LED is a high power dissipation device, special and sufficient consideration in thermal management design must be made to optimize the thermal performance.
- ② Heat sink design is implemented in the device for an additional thermal connection. Since the device is capable of SMT process, tin must be spread both heat sink and solder pads areas to dissipate the heat.
- ③ A high thermal conductivity substrate, such as Aluminum or Copper plate etc, must be applied for external thermal management. It is strongly recommended that the outer heat sink or PCB dimension per LED can not be less than 25 \times 25 \times 1 (L x W x H) mm. The materials for outer heat sink can be FR4 on Aluminum, MCPCB, or FPC on Aluminum.
- ④ Special thermal designs are also recommended to take in outer heat sink design, such as FR4 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc.
- ⑤ Sufficient thermal management must be conducted, or the die junction temperature will be over the limit under large electronic driving and LED lifetime will decrease critically.

4. Soldering Condition

- ① Soldering should not be done more than two times.
- ② While soldering, do not put stress on the LEDs during heating.
- 3 After soldering, do not warp the circuit board.

Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 7 OF 8

Approved: JoJo Checked: Wu Drawn: Yao

5. Soldering Iron

- ① For prototype builds or small series production runs it is possible to place and solder the LED by hand.
- ② It is recommended to hand solder the leads with a solder tip temperature of 280°C for less than 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal.
- ③ Be careful because the damage of the product is often started at the time of the hand solder.

6. Handling Indications

During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.

Spec No: HP60M Rev No: V.3 Date: Sep /16/2009 Page: 8 OF 8

Approved: JoJo Checked: Wu Drawn: Yao