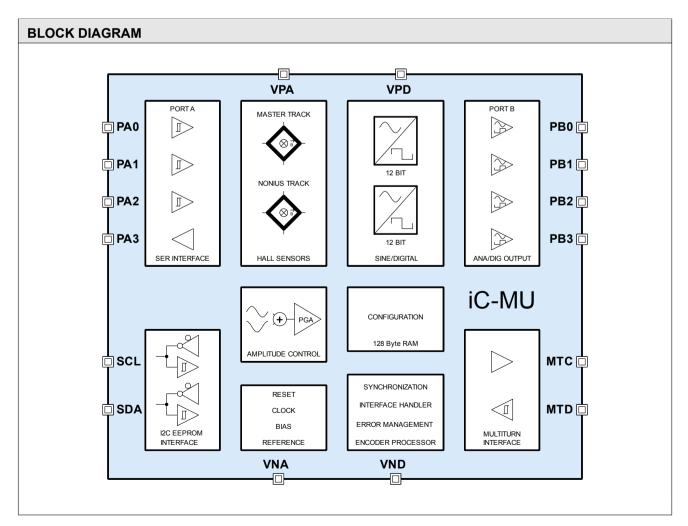

Rev D1, Page 1/66


FEATURES

- ♦ Integrated Hall sensors for two-track scanning
- ♦ Hall sensors optimized for 1.28 mm pole width (master track)
- ♦ Signal conditioning for offset, amplitude, and phase
- ♦ Sine/digital real-time conversion with 12-bit resolution (14-bit filtered)
- ♦ 2-track nonius absolute value calculation up to 18 bits
- ♦ 16, 32, or 64 pole pairs per measurement distance
- ♦ Enlargement of measurement distance with second iC-MU
- ♦ Synchronization of external multiturn systems
- ♦ Configuration from an external EEPROM using a multimaster I2C interface
- ♦ Microcontroller-compatible serial interface (SPI, BiSS, SSI)
- ♦ Incremental quadrature signals with an index (ABZ)
- ♦ FlexCount®: scalable resolution from 1 up to 65536 CPR
- ♦ Commutation signals for motors from 1 up to 16 pole pairs (UVW)

APPLICATIONS

- ♦ Rotative absolute encoders
- ♦ Linear absolute scales
- Singleturn and multiturn encoders
- Motor feedback encoders
- ♦ BLDC motor commutation
- ♦ Hollow shaft encoder
- Multi-axis measurement systems

Rev D1, Page 2/66

DESCRIPTION

iC-MU is used for magnetic off-axis position definition with integrated Hall sensors. By scanning two separate channels i.e. the master and nonius track the device can log an absolute position within one mechanical revolution. The chip conditions the sensor signals and compensates for typical signal errors.

The internal 12-bit sine/digital converters generate two position words that supply high-precision position data within one sine-period. The integrated nonius calculation engine calculates the absolute position within one mechanical revolution and synchronizes this with the master track position word. Position data can be transmitted serially, incrementally, or analog through two ports in various modes of operation. Commutation signals for brushless DC (BLDC) motors with up

to 16 pole pairs are derived from the absolute position and supplied through a 3-pin interface.

During startup the device loads a CRC-protected configuration from an external EEPROM.

After the device has been reset an optional external multiturn is read in an synchronized with the internal position data. During operation the position is cyclically checked.

The device offered here is a multifunctional iC that contains integrated BiSS C interface components. The BiSS C process is protected by patent DE 10310622 B4 owned by iC-Haus GmbH. Users benefit from the open BiSS C protocol with a free license which is necessary when using the BiSS C protocol in conjunction with this iC.

Download the license at www.biss-interface.com/bua

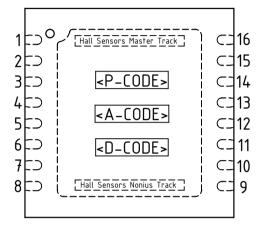
Rev D1, Page 3/66

CONTENTS

PACKAGING INFORMATION	5	Serial interface	
PIN CONFIGURATION DFN16-5x5	3	Configuring the data format and data	
(topview)	5	length	28
PACKAGE DIMENSIONS	6	BiSS C Interface	30
THORNOL DIMENSIONS	O	SSI interface	31
ABSOLUTE MAXIMUM RATINGS	7	SPI Interface: general description	33
		SPI Interface: Command ACTIVATE	33
THERMAL DATA	7	SPI interface: Command SDAD transmission	34
	_	SPI interface: Command SDAD status	35
ELECTRICAL CHARACTERISTICS	8	SPI interface: Command Read REGISTER	
OPERATING REQUIREMENTS	10	(single)	35
Multiturn Interface	10	SPI interface: Command Write REGISTER	
I/O Interface	11	(single)	36
I/O Interface	11	SPI interface: Command REGISTER	
PRINCIPLE OF MEASUREMENT	13	status/data	36
Rotative measuring system	13	CONVERTER AND NONIUS CALCULATION	38
Linear measuring system	13	Converter principle	38
		Synchronization mode	38
CONFIGURATION PARAMETERS	14	,	
DECICTED ACCIONMENTS (FEDDOM)	40	MT INTERFACE	41
REGISTER ASSIGNMENTS (EEPROM)	16	Configuration of the Multiturn interface	41
Register assignment (EEPROM)	16	Construction of a Multiturn system with two	
Special BiSS registers	19	iC-MU	42
SIGNAL CONDITIONING FOR MASTER AND		MT Interface Daisy Chain	44
NONIUS CHANNELS: x = M,N	20	INCREMENTAL OUTPUT ABZ,	
Bias current source	20	STEP/DIRECTION AND CW/CCW	45
Gain settings	20		
Offset compensation	21	UVW COMMUTATION SIGNALS	48
Phase adjustment	21	REGISTER ACCESS THROUGH SERIAL	
		INTERFACE (SPI AND BISS)	49
ANALOG SIGNAL CONDITIONING FLOW: x =		Address sections/Register protection level	53
M,N	22	Overview Register access: memory mapping,	
1. Conditioning the BIAS current	22	Register protection levels	54
2. Positioning of the sensor	22		
3.a Test modes analog master and analog nonius	22	STATUS REGISTER AND ERROR MONITORING	
3.b Test mode CNV x	22	Status register	55
4. Track offset SPON	23	Error and warning bit configuration	55
4. Track offset Stroth	23	COMMAND REGISTER	57
I2C INTERFACE AND STARTUP BEHAVIOR	24		57
I2C interface / CRC	24	Description of implemented commands Configurable NPRES Pin	5 <i>i</i>
Startup behavior	25	Configurable INFINES FIII	บช
,	-	POSITION OFFSET VALUES AND PRESET	
CONFIGURABLE I/O INTERFACE	27	FUNCTION	61
Setting the interfaces	27	Preset function	61

Rev D1, Page 4/66

DESIGN REVIEW: Notes On Chip Functions 63 REVISION HISTORY


64

Rev D1, Page 5/66

PACKAGING INFORMATION

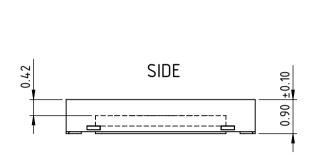
PIN CONFIGURATION DFN16-5x5 (topview)

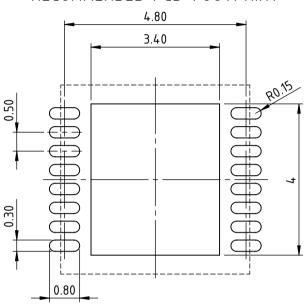
PIN FUNCTIONS

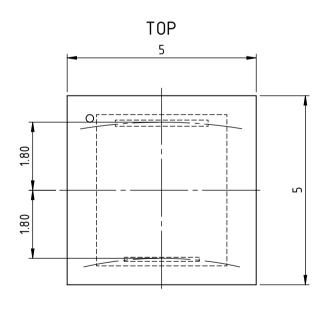
No. Name Function

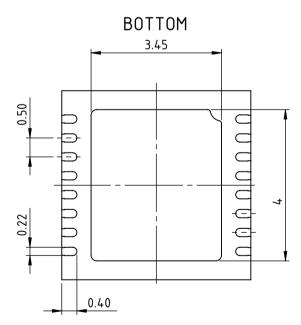
1	SCL	EEPROM interface, clock
2	SDA	EEPROM interface, data
3	VPA	+4.5 V+5.5 V analog supply voltage
4	VNA ¹⁾	Analog Ground
5	PB0	Port B, Pin 0: Digital I/O, analog output
6	PB1	Port B, Pin 1: Digital I/O, analog output
7	PB2	Port B, Pin 2: Digital I/O, analog output
8	PB3	Port B, Pin 3: Digital I/O, analog output
9	PA3	Port A, Pin 3: Digital I/O
10	PA2	Port A, Pin 2: Digital I/O
11	PA1	Port A, Pin 1: Digital I/O
12	PA0	Port A, Pin 0: Digital I/O
13	VND ¹⁾	Digital ground
14	VPD	+4.5 V +5.5 V digital supply voltage
15	MTD	Multiturn interface, data input
16	MTC	Multiturn interface, clock output
	$BP^{2)}$	Backside Pad

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);


¹⁾ Analog (VNA) and digital grounds (VND) have to be connected low ohmic on the PCB.
2) The backside pad on the underside of the package should be appropriately connected to VNA/VND for better heat dissipation (ground plane).
3) Only the Pin 1 mark on the front or reverse is determinative for package orientation (<P-CODE>, <A-CODE>, <D-CODE> are subject to change).




Rev D1, Page 6/66


PACKAGE DIMENSIONS

RECOMMENDED PCB-FOOTPRINT

All dimensions given in mm. Tolerances of form and position according to JEDEC M0-229. Positional tolerance of sensor pattern: ± 0.10 mm / $\pm 1^{\circ}$ (with respect to center of backside pad).

dra_dfn16-5x5-2_mu_1_pack_1, 10:1

Rev D1, Page 7/66

ABSOLUTE MAXIMUM RATINGS

Maximum ratings do not constitute permissible operating conditions; functionality is not guaranteed. Exceeding the maximum ratings can damage the device

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VPA, VPD		-0.3	6	V
G002	I()	Current in VPA		-10	20	mA
G003	I()	Current in VPD		-10	100	mA
G004	V()	Voltage at all pins except VPD		-0.3	VPD+0.3	V
G005	I()	Current in all I/O pins	DC current Pulse width < 10 µs	-10 -100	10 100	mA mA
G006	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G007	Ptot	Permissible Power Dissipation			400	mW
G008	Tj	Chip-Temperature		-40	150	°C
G009	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating conditions: VPA = VPD = $5 V \pm 10\%$

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		110	°C
T02	Rthja		Surface mounted, Thermal-Pad soldered to approx. 2 cm ² copper area on the PCB		40		K/W

Rev D1, Page 8/66

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = 5 V \pm 10%, Tj = -40. . . 125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device						
101	V(VPA, VPD)	Permissible Supply Voltage	VPA = VPD	4.5	5	5.5	V
103	I(VPA)	Analog Supply Current in VPA		8	13	16	mA
104	I(VPD)	Digital Supply Current in VPD		20	40	65	mA
105	Vc()hi	Clamp Voltage hi at All Pins	Vc()hi = V() - V(VPD), I() = +1 mA	0.3		1.6	V
106	Vc()lo	Clamp Voltage lo at All Pins	I() = -1 mA	-1.6		-0.3	V
107	ton()	Power-Up Time	read in		20		ms
108	ΔV/Δt	VPD		50			V/s
109	CVPA, CVPD	Required Backup Capacitors at VPA, VPD	placed near by pin, recommended low ESR		100		nF
Hall S	ensors						
201	Hext	Operating Magnetic Field Strength	at surface of chip	15		100	kA/m
202	f()	Operating Magnetic Field Frequency				7	kHz
203	rpm	Permissible Rotation of Pole Wheel with FRQ_CNV=lo	16 pole pairs 32 pole pairs 64 pole pairs (note: for incremental part see table 78)			24000 12000 6000	rpm rpm rpm
204	vmax	Permissible Movement Speed				17	m/s
205	hpac	Sensor-to-Package-Surface Distance	with DFN16-5x5 mm		400		μm
Asser	nbly Tolera	nnces					•
301	TOLrad	Permissible Radial Displacement				0.5	mm
302	TOLtan	Permissible Tangential Displacement				0.5	mm
303	WOBrad	Permissible Eccentricity of Code Disc	MPC = 0x4 MPC = 0x5, 0x6			0.06 0.1	mm mm
Bias (urce, Reference Voltage, Power O					
401	Vbg	Bandgap Voltage	TEST = 0x1F	1.18	1.24	1.36	V
402	Vref	Reference Voltage	TEST = 0x1F	45	50	55	%VPA
403	IBM	Reference Current	CIBM = 0x0 CIBM = 0xF IBM calibrated	-370 -220	-200	-100 -180	μΑ μΑ μΑ
404	VPDon	Turn-on Threshold VPD (Power-On Release)	increasing voltage at V(VPD)	3.65	3.9	4.3	V
405	VPDoff	Turn-off Threshold VPD (Power-Down Reset)	decreasing voltage at V(VPD)	3	3.5	3.8	V
406	VPDhys	Hysteresis	VPDhys = VPDon - VPDoff	0.3			V
407	fosc	Clock Frequency	TEST=0x26, fosc = 64*f(HCLK), IBM aligned	22	26	32	MHz
408	tchk	Max. Time For Internal Cyclic Checks	NCHK_NON = 0x0, CHK_MT = 0x1, NCHK_CRC = 0x0, MODE_MT = 0xF (18 bit), SBL_MT = 0x3 (4 bit), ESSI_MT = 0x1 (Error bit)			6	ms
Signa	I Condition	ning Master and Nonius Track (x =	M, N)				
501	GC	Adjustable Gain Range	GC_x = 0x0 GC_x = 0x1 GC_x = 0x2 GC_x = 0x3		4.4 7.7 12.4 20.6		
502	GF	Adjustable Fine Gain Range	GF_x = 0x00 GF_x = 0x20 GF_x = 0x3F		1 4.4 19		

Rev D1, Page 9/66

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = 5 V \pm 10%, Tj = -40. . . 125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
503	GX	Adjustable Gain(SIN)/Gain(COS)	GX_x = 0x00 GX_x = 0x3F GX_x = 0x7F	9	0 10 -9	-8.5	% % %
504	vos	Adjustable Offset Calibration	VOS_x = 0x3F VOS_x = 0x7F	60	70 -70	-60	mV mV
505	PHM	Adjustable Phase Calibration Master Track	PH_M = 0x3F PH_M = 0x7F	6	7 -7	-6	0
506	PHN	Adjustable Phase Calibration Nonius Track	PH_N = 0x3F PH_N = 0x7F	11.25	13 -13	-11.25	0
507	Vampl	Signal Level Controller	chip internally, Vampl = Vpp(PSINx)+Vpp(NSINx), ENAC = 1		4	4.8	Vpp
508	Vae()lo	Signal Monitoring Threshold lo	Vae()lo = Vpp(PSINx)+Vpp(NSINx)	1.2		2.8	Vpp
509	Vae()hi	Signal Monitoring Threshold hi	Vae()hi = Vpp(PSINx)+VPP(NSINx)	5		6.3	Vpp
Sine-	Го-Digital Co						
601	Aabs	Absolute Angular Accuracy	ideal input signals, reference to 12 Bit of sine period			2	LSB
602	Arel	Relative Angular Accuracy	FILT = 0x2 FILT = 0x7 ideal input signals, reference to 12 Bit of sine period, f = 1 KHz			2 1/4	LSB LSB
Noniu	s Calculation	on					
701	Pnon	Permissible Track deviation Master vs. Nonius	16 periods, MPC = 0x4 32 periods, MPC = 0x5 64 periods, MPC = 0x6 referenced to 360° of Master sine period			10 5 2.5	DEG DEG DEG
Digita	l Output Po	rt PA13, MTC, SCL, SDA					
801	Vs()hi	Saturation Voltage hi Pins PA13 MTC	Vs()hi = V(VPD) - V(), I() = -4 mA			0.4	V
802	Vs()lo	Saturation Voltage lo	I() = 4 mA versus VND			0.4	V
803	Isc()hi	Short-Circuit Current hi Pins PA13, MTC	V() = V(VND), 25 °C	-90	-50		mA
804	lsc()lo	Short-Circuit Current lo	V() = V(VPD), 25 °C		50	90	mA
805	tr()	Rise Time	CL = 50 pF			60	ns
806	tf()	Fall Time	CL = 50 pF			60	ns
807	IIk(PA3)	Leakage Current at PA3	MODEA=0, PA0 = hi	-5		5	μA
808	f(SCL)	Frequency at SCL	normal mode during start-up		80 70		kHz kHz
Digita	I Input Port	PA02, MTD, SCL, SDA					
901	Vt()hi	Threshold Voltage hi				2	V
902	Vt()lo	Threshold Voltage lo		0.8			V
903	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	150			mV
904	lpu()	Pull-Up Current Pins PA02, MTD	V() = 0 V V(VPD)-1 V	-60	-30	-6	μA
905	lpu()	Pull-Up Current Pins SCL, SDA	V() = 0 V V(VPD)-1 V	-800	-300	-80	μA
906	f()	Permissible Input Frequency				10	MHz
Analo	g/Digital Ou	tput Port PB03					
A01	I()buf	Analog Driver Current		-1		1	mA
A02	fg()ana	Analog Bandwidth			100		kHz
A03	lsc()hi,ana	Analog Short-Circuit Current hi	V() = V(VND)			-1.5	mA
A04	lsc()lo,ana	Analog Short-Circuit Current lo	V() = V(VPD)	1.5			mA
A05	Rout(),ana	Output Resistor, Analog Mode	I() = 1 mA			500	Ω
A06	Vs()hi,dig	Digital Saturation Voltage hi	Vs() = V(VPD) - V(), I() = -4 mA			0.5	V
A07	Vs()lo,dig	Digital Saturation Voltage lo	I() = 4 mA			0.5	V
A08	lsc()hi,dig	Short-Circuit Current hi	V() = V(VPD)	-60	-35		mA

Rev D1, Page 10/66

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = $5 \text{ V} \pm 10\%$, Tj = -40...125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
A09	Isc()lo,dig	Short-Circuit Current lo	V() = V(VND)		45	70	mA
A10	tr()	Rise Time	CL = 50 pF			50	ns
A11	tf()	Fall Time	CL = 50 pF			50	ns
A12	Ipu(PB3)	Pull-Up Current	V() = 0 VV(VPD) - 1 V, MODEB = 0x00x3	-60	-30	-6	μA
A13	llk()	Leakage Current	MODEB = 0x7	-5		5	μA

OPERATING REQUIREMENTS: Multiturn Interface

ltem	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
Multitu	rn Interfac	e (Figure 1)				
1001	t _{MTC}	Clock Period		6	.4	us
1002	t _s MD	Setup Time: Data valid before MTC hi→lo		50		ns
1003	t _h MD	Hold Time: Data stable after MTC hi→lo		50		ns
1004	t _{tos}	Timeout		2	0	us
1005	t _{cycle}	Cycle Time	CHK_MT=1	1	5	ms

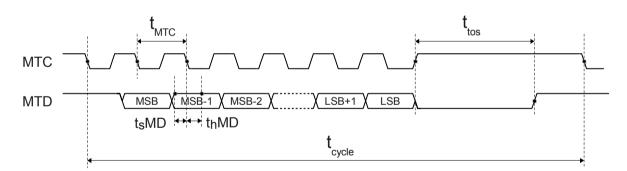


Figure 1: Timing multiturn interface, MODE_MT/=0

Rev D1, Page 11/66

OPERATING REQUIREMENTS: I/O Interface

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
	⊥ terface (Fig	uire 2)		141111	Wax.	
1101	T _{SCK}	Permissible Clock Period	see Elec. Char. No.: 906	1	/f()	ns
1102	t _{NCS}	Setup Time: NCS lo before SCK hi → lo	See Elec. Shar. No.: 500	50	//()	ns
l103	tp1	Propagation Delay: MISO hi after NCS lo \rightarrow hi			30	ns
l104	t _{IS}	Setup Time: MOSI stable before SCK lo → hi		30		ns
l105	t _{SI}	Hold Time: MOSI stable after SCK lo → hi		30		ns
I106	tp2	Propagation Delay: MISO stable after SCK hi → lo		30		ns
l107	t _{CC}	Wait Time: between NCS lo \rightarrow hi and NCS hi \rightarrow lo		500		ns
BiSS-I	nterface (F	igure 3,Figure 4)				
I108	t _{tos}	Timeout adaptive	typ. t _{init}	1.5*t _{MAS}	1.5*t _{MAS} + 3*2/f _{osc}	ns
I109	t _{MAS}	Permissible Clock Period		100	2 x t _{tos}	ns
I110	t _{MASh}	Clock Signal Hi Level Duration		50	t _{tos}	ns
I111	t _{MASI}	Clock Signal Lo Level Duration		50		ns
SSI-Int	erface (Fig	jure 5, Figure 6)				
l112	t _{tos}	Timeout adaptive	typ. t _{init}	1.5*t _{MAS}	1.5*t _{MAS} + 3*2/f _{osc}	
I113	t _{MAS}	Permissible Clock Period		250	2 x t _{tos}	ns
I114	t _{MASh}	Clock Signal Hi Level Duration		125	t _{tos}	ns
I115	t _{MASI}	Clock Signal Lo Level Duration		125		ns

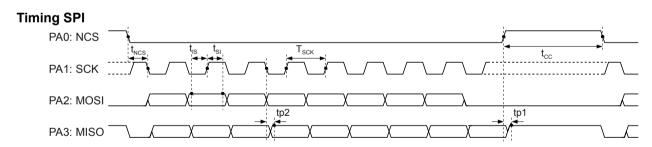


Figure 2: Timing SPI interface

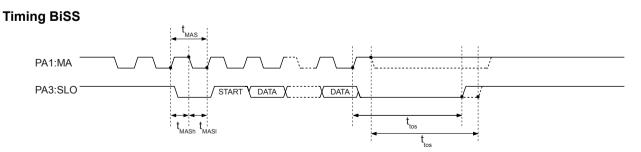


Figure 3: Timing BiSS interface

Rev D1, Page 12/66

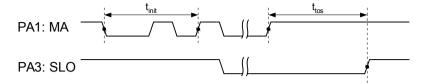


Figure 4: Timeout BiSS interface adaptive

Timing SSI

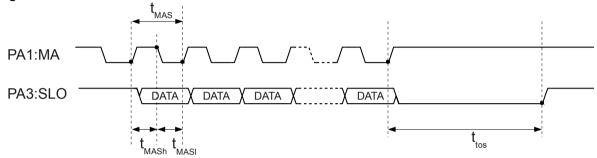


Figure 5: Timing SSI interface

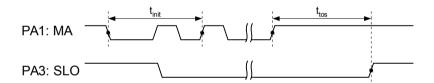


Figure 6: Timeout SSI interface adaptive

Rev D1, Page 13/66

PRINCIPLE OF MEASUREMENT

An absolute position measuring system consists of a magnetized code carrier and an iC-MU which integrates Hall sensors for signal scanning, signal conditioning, and interpolation in one single device. iC-MU can be used in rotative and linear measurement systems.

Figure 7: Rotative position measurement system

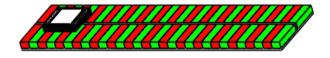


Figure 8: Linear position measurement system

Rotative measuring system

The magnetic code carrier consists of two magnetic encoder tracks. The outer track comprises an even number of alternately magnetized poles and is used for high-precision position definition. This is thus called the master track. The second inside track has one pole pair less than the outer track and is thus referred to as the nonius track. This track is used to calculate an absolute position within one revolution of the pole disc. To this end, the difference in angle between the two tracks is calculated.

Number of pole pairs		16	32	64
Master track diameter	[mm]	13.04	26.08	52.15
Chip center to axis center	[mm]	4.72	11.24	24.28
Nonius track diameter	[mm]	5.84	18.88	44.95
Master track pole width	[mm]	1.28	1.28	1.28
Nonius track pole width	[mm]	0.61	0.96	1.12

Table 6: Pole disc dimensions in mm for rotative systems

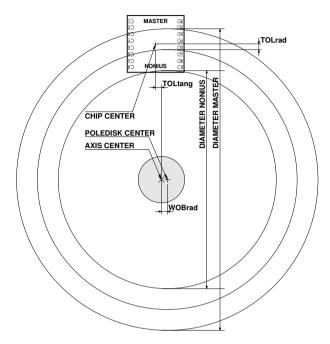


Figure 9: Definition of system measurements

The Hall sensors of iC-MU span one pole pair of the code carrier. The pole width of the master track is defined by the distance of the Hall sensors and is 1.28 mm. The position of the sensors on the upper chip edge has been optimized for 32 pole pairs. Accordingly, the Hall sensors generate a periodic sine and cosine signal with a cycle length of 2.56 mm. The scan diameter can be computed from the number of pole pairs. The diameter of the pole disc although depends on other mechanical requirements and should be approx. 3 mm greater than the scan diameter. A specific diameter for the master and nonius tracks is derived depending on the number of configured pole pairs.

The distance between the hall sensors of the nonius track and the master track is stipulated as being 3.6 mm by the evaluation device. The scan diameters of the nonius track can be seen in Table 6.

Linear measuring system

With a linear nonius system the pole width of the master track is also 1.28 mm. The pole width of the nonius track is defined by the number of pole pairs with

$$p_{\text{nonius}} = 1.28 \, mm * \frac{\text{number of poles}_{\text{master}}}{\text{number of poles}_{\text{nonius}}}$$

Number of pole pairs	16	32	64
Master track pole width [mm]	1.28	1.28	1.28
Nonius track pole width [mm]	1.365	1.321	1.300

Table 7: Linear scales, pole widths in mm

Rev D1, Page 14/66

CONFIGURATION PARAMETERS

Analog parameters (valid for all channels)

CIBM: Bias current settings (p. 20)

ENAC: Amplitude control unit activation (p. 21)

Signal conditioning

GC_M: Master gain range selection (p. 20)

GF M: Master gain (p. 20)

GX_M: Master cosine signal gain adjustment

(p. 20)

VOSS_M: Master sine offset adjustment (p. 21)
VOSC_M: Master cosine offset adjustment (p. 21)
PH_M: Master phase adjustment (p. 21)

GC_N: Nonius gain range selection (p. 20)

GF_N: Nonius gain (p. 20)

GX_N: Nonius cosine signal gain adjustment

(p. 20)

VOSS_N: Nonius sine offset adjustment (p. 21)
VOSC_N: Nonius cosine offset adjustment (p. 21)

PH_N: Nonius phase adjustment (p. 21)

Digital parameters

TEST: Adjustment modes/iC-Haus test modes

(p. 22)

CRC16: EEPROM configuration data checksum

(p. 24)

CRC8: EEPROM offset and preset data

checksum (p. 24)

NCHK CRC: Cyclic check of CRC16 and CRC8

(p. 24)

BANKSEL: Serial Access: Bankregister (p. 49)
RPL: Register Access Control (p. 53)

RPL RESET: Serial Access: Register for reset register

access restriction (p. 53)

EVENT_COUNT: Serial Access: Eventcounter (p. 58) HARD REV: serial address: revision code (p. 52)

Configurable I/O interface

MODEA: I/O port A configuration (p. 27)
MODEB: I/O port B configuration (p. 27)

PA0_CONF: Configurable commands to pin PA0 A

(p. 59)

ROT: Direction of rotation (p. 48)

OUT MSB: Output shift register configuration: MSB

used bits (p. 29)

OUT LSB: Output shift register configuration: LSB

used bits (p. 29)

OUT_ZERO:

Output shift register configuration:

number of zeros inserted after the used

bits and before an error/warning (p. 29)

MODE_ST: Data output (p. 28)

GSSI: Gray/binary data format (p. 32)

RSSI: Ring operation (p. 32)

Multiturn interface

MODE_MT: Multiturn mode (p. 41)

SBL MT: Multiturn synchronization bit length

(p. 41)

CHK_MT: Cyclic check of the multiturn value

(p. 42)

GET_MT: MT interface daisy chain (S. 44)

ROT_MT: Direction of rotation external multiturn

(p. 42)

ESSI_MT: Error Bit external multiturn (p. 42)

SPO_MT: Offset external multiturn (p. 42)

Converter and nonius calculation

FILT: Digital filter settings (p. 38)
MPC: Master period count (p. 38)
LIN: Linear scanning (p. 39)
SPO_x: Offset of nonius to master

(x=BASE,0-14) (p. 39)

NCHK_NON: Cyclic check of the nonius value (low

active) (p. 40)

Incremental output ABZ, STEP/DIR and CW/CCW

RESABZ: Incremental interface resolution

ABZ,STEP-DIR,CW/CCW (p. 45)

LENZ: Index pulse length (p. 46)

INV_A: A/STEP/CW signal inversion (p. 45)
INV_B: B/DIR/CCW signal inversion (p. 45)
INV_Z: Z/NCLR signal inversion (p. 45)
SS_AB: System AB step size (p. 46)
FRQAB: AB output frequency (p. 46)
CHYS AB: Converter hysteresis (p. 47)

ENIF AUTO: Incremental interface enable (p. 47)

UVW commutation signals

PPUVW: Number of commutation signal pole

pairs (p. 48)

PP60UVW: Commutation signal phase position

(p. 48)

OFF_UVW: Commutation signal start angle (p. 48)

OFF_COM: serial address: absolute position offset

for UVW calculation engine changed by

nonius (S. 48)

Status/command registers and error monitoring

CMD_MU: serial address: command register (p. 57)
STATUS0: serial address: status register 0 (p. 55)
STATUS1: serial address: status register 1 (p. 55)
CFGEW: Error and warning bit configuration

(p. 55)

EMTD: Minimum error message duration (p. 56)

ACC_STAT: Output configuration status register

(S. 55)

ACRM RES: Automatic reset with master track

amplitude errors (p. 40)

Rev D1, Page 15/66

BiSS spezific IDs

DEV_ID: Device ID (p. 19)
MFG_ID: Manufacturer ID (p. 19)
EDSBANK: EDSBANK (p. 19)

PROFILE_ID: Profile ID (p. 19)

SERIAL: Serial number (p. 19)

Preset function

OFF_ABZ: Offset Absolute position offset for ABZ

calculation engine (p. 61)

OFF_POS: serial address: absolute position offset

for ABZ calculation engine changed by

nonius/multiturn (p. 61)

PRES_POS: Preset position for ABZ section (p. 61)

Rev D1, Page 16/66

REGISTER ASSIGNMENTS (EEPROM)

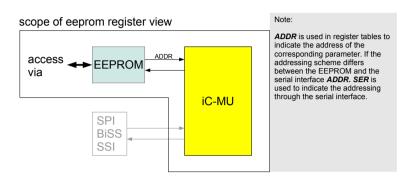


Figure 10: Scope of register mapping EEPROM

Register assignment (EEPROM)

OVERV	'IEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Signal C	onditioning	<u> </u>		<u> </u>	I			
0x00		VI(1:0)			GF_N	1(5:0)		
0x01	_		I		GX_M(6:0)	· ,		
0x02				,	VOSS_M(6:0)		
0x03				,	VOSC_M(6:0)		
0x04					PH_M(6:0)			
0x05	ENAC					CIBN	M(3:0)	
0x06	GC_I	N(1:0)		1	GF_N	V(5:0)		
0x07					GX_N(6:0)			
80x0				,	VOSS_N(6:0))		
0x09				,	VOSC_N(6:0))		
0x0A					PH_N(6:0)			
Digital F	Parameters							
0x0B			MODEB(2:0)	1			MODEA(2:0)	
0x0C		1		CFGE	W(7:0)			
0x0D	ACC_STAT	NCHK_CRC	NCHK_NON	ACRM_RES			EMTD(2:0)	
0x0E	ESSI_I	MT(1:0)	ROT_MT	LIN			FILT(2:0)	
0x0F		SPO_N				MPC	(3:0)	
0x10	GET_MT	CHK_MT		/IT(1:0)		_	MT(3:0)	
0x11	0	UT_ZERO(2:			0	UT_MSB(4:	•	
0x12	GSSI	RSSI	MODE_	ST(1:0)		OUT_L	SB(3:0)	
0x13					BZ(7:0)			
0x14					3Z(15:8)			
0x15	ROT			B(1:0)	ENIF_AUTO		FRQAB(2:0)	
0x16		Z(1:0)	CHYS_	AB(1:0)	PP60UVW	INV_A	INV_B	INV_Z
0x17	RPL	.(1:0)			PPUV	W(5:0)		
TEST								
0x18				TES	Γ(7:0)			
	OFFSET							
0x19			0(3:0)				ASE(3:0)	
0x1A		SPO_	2(3:0)			SPO_	_1(3:0)	

Rev D1, Page 17/66

OVERVI	IFW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit	t O
0x1B	5.()		4(3:0)	Dit 0		_3(3:0)			
0x1C	SPO_6(3:0)						_5(3:0)		
0x1D	SPO_8(3:0)						7(3:0)		
0x1E	SPO_10(3:0)						_9(3:0)		
0x1F	SPO_10(3.0) SPO_12(3:0)						11(3:0)		
0x20			14(3:0)				13(3:0)		
CRC16			(/				(/		
0x21				CRC1	6(15:8)				
0x22				CRC1	16(7:0)				
OFFSET	PRESET								
0x23		OFF_A	BZ(3:0)						
0x24				OFF_A	BZ(11:4)	-			
0x25				OFF_AE	3Z(19:12)				
0x26				OFF_AE	3Z(27:20)				
0x27				OFF_AE	3Z(35:28)				
0x28		OFF_U	VW(3:0)	_					
0x29			, ,	OFF_U\	√W(11:4)				
0x2A		PRES_F	POS(3:0)	_					
0x2B				PRES_F	POS(11:4)	"			
0x2C				PRES_P	OS(19:12)				
0x2D				PRES_P	OS(27:20)				
0x2E				PRES_P	OS(35:28)				
CRC8									
0x2F				CRC	8(7:0)				
PA0_CO	NF								
0x30				PA0_C0	ONF(7:0)				
BiSS Pro	file and Seria	al number							
0x31					(7:0) = 0x01				
0x32					E_ID(7:0)				
0x33				PROFILE	_ID(15:8)				
0x34					AL(7:0)				
0x35					L(15:8)				
0x36					L(23:16)				
0x37				SERIA	L(31:24)				
BiSS Ide	ntifier								
0x38					ID(7:0)				
0x39	DEV_ID(15:8)								
0x3A	DEV_ID(23:16)								
0x3B					0(31:24)				
0x3C					0(39:32)				
0x3D					0(47:40)				
0x3E	MFG_ID(7:0)								
0x3F					D(15:8)				
Notes:	Register ass	signment for	serial access	s through SP	/BiSS s.p. 4	9			

Rev D1, Page 18/66

Rev D1, Page 19/66

Special BiSS registers

For further information on parameters, see BiSS Interface Protocol Description (C Mode) www.ichaus.de/product/iC-MU.

DEV_ID(7:0)	Addr. 0x38; bit 7:0
	Addr. SER:0x78; bit 7:0
DEV_ID(15:8)	Addr. 0x39; bit 7:0
	Addr. SER:0x79; bit 7:0
DEV_ID(23:10	Addr. 0x3A; bit 7:0
	Addr. SER:0x7A; bit 7:0
DEV_ID(31:24	4) Addr. 0x3B; bit 7:0
	Addr. SER:0x7B; bit 7:0
DEV_ID(39:32	2) Addr. 0x3C; bit 7:0
	Addr. SER:0x7C; bit 7:0
DEV_ID(47:40	O) Addr. 0x3D; bit 7:0
	Addr. SER:0x7D; bit 7:0
Code	Description
0x00000000000	
	DEV_ID
0xFFFFFFFFFF	

Table 9: Device ID

MFG_ID(7:0)	Addr. 0x3E; bit 7:0	
	Addr. SER:0x7E; bit 7:0	
MFG_ID(15:8) Addr. 0x3F; bit 7:0	
	Addr. SER:0x7F; bit 7:0	
Code	Description	
0x0000		
	MFG_ID	
0xFFFF		

Table 10: BiSS Manufacturer ID

EDSBANK(7:	0) Addr. 0x31; bit 7:0
EDSBANK(7:	0) Addr. SER:0x41; bit 7:0
Code	Description
0x00	no EDS
0x01	
	EDSBANK pointer to first EDS bank
0xFE	
0xFF	no EDS
Note:	recommended value 0x02, in this case an additional sensor like iC-PVL can use BANK 1 for configuration

Table 11: EDSBANK: Start of EDS-part

PROFILE_ID	(7:0) Addr. 0x32; bit 7:0
	Addr. SER:0x42; bit 7:0
PROFILE_ID	(15:8) Addr. 0x33; bit 7:0
	Addr. SER:0x43; bit 7:0
Code	Description
0x0000	
	PROFILE_ID
0xFFFF	

Table 12: Profile ID

SERIAL(7:0)	Addr. 0x34; bit 7:0
	Addr. SER:0x44; bit 7:0
SERIAL(15:8)	Addr. 0x35; bit 7:0
	Addr. SER:0x45; bit 7:0
SERIAL(23:10	6) Addr. 0x36; bit 7:0
	Addr. SER:0x46; bit 7:0
SERIAL(31:2	4) Addr. 0x37; bit 7:0
	Addr. SER:0x47; bit 7:0
Code	Description
0x00000000	
	SERIAL
0xFFFFFFF	

Table 13: Serial number

Rev D1, Page 20/66

SIGNAL CONDITIONING FOR MASTER AND NONIUS CHANNELS: x = M,N

Bias current source

The calibration of the bias current source in test mode TEST=0x1F is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. SCL clock frequency). For the calibration the current out of pin PB2 into VNA must be measured, and register bits CIBM changed until the current is calibrated to 200 μ A.

CIBM(3:0)	Addr. 0x05; bit 3:0
Code	Description
0x0	-40 %
0x8	0 %
0x9	+5 %
0xF	+35 %

Table 14: Calibrating the bias current

Gain settings

iC-MU has signal conditioning features that can compensate for signal and adjustment errors. The Hall signals are amplified in two stages. The gain of both amplification stages is automatically controlled when the bit ENAC is set to '1'. The register bits GC_x and GF_x have no effect. In the case of a deactivated automatic gain control (ENAC='0') the gain must be set manually. First, the approximate field strength range must be selected in which the Hall sensor is to be operated. The first amplifier stage can be programmed in the following ranges:

GC_M(1:0)	Addr. 0x00; bit 7:6
GC_N(1:0)	Addr. 0x06; bit 7:6
Code	Coarse gain
0x0	4.4
0x1	7.8
0x2	12.4
0x3	20.7

Table 15: Selection of the Hall signal amplification range

The second amplifier stage can be varied within a wide range.

GF_M(5:0)	Addr. 0x00; bit 5:0
GF_N(5:0)	Addr. 0x06; bit 5:0
Code	Fine gain
0x00	1.000
0x01	1.048
	$exp(\frac{ln(20)}{64} \cdot GF_x)$
0x3F	19.08

Table 16: Hall signal amplification

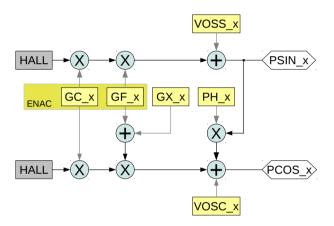


Figure 11: Conditioning of hall voltages

Register GX_x enables the sensitivity of the sine channel in relation to the cosine channel to be corrected. The amplitude of the cosine channel is adapted to the amplitude of the sine channel. The cosine amplitude can be corrected within a range of approx. ±10 %.

GX_M(6:0)	Addr. 0x01; bit 6:0
GX_N(6:0)	Addr. 0x07; bit 6:0
Code	Description
0x00	1.000
0x01	1.0015
	$exp(\frac{ln(20)}{2048} \cdot GX x)$
0x3F	1.0965
0x40	0.9106
	$exp(-\frac{ln(20)}{2048} \cdot (128 - GX_x))$
0x7F	0.9985

Table 17: Cosine gain adjustment

The integrated amplitude control unit can be activated using bit ENAC. In this case the differential signal amplitude is regulated to 2 Vpp; the values of GF_x have no effect here.

Rev D1, Page 21/66

ENAC	Addr. 0x05; bit 7		
Code	Description		
0	Amplitude control not active (constant)		
1	Amplitude control active $(sin^2 + cos^2)$		

Table 18: Amplitude control unit activation

The current gain set by the amplitude control unit can be read with the parameters ACGAIN_M and ACGAIN_N for the gain range, AFGAIN_M and AFGAIN_N for the gain factor (ref. Table 19 and 20). AFGAIN_M and AFGAIN_N shows coarse steps of the gain factor, but the amplitude control unit uses a finer resolution to control the gain factor.

ACGAIN_M(1:0)		Addr. SER:0x2B;	bit 4:3	R
ACGAIN_N(1:0)		Addr. SER:0x2F;	bit 4:3	R
Code	Gain range			
0x0	4.4			
0x1	7.8			
0x2	12.4			
0x3	20.7			

Table 19: Current gain range of amplitude control unit

AFGAIN_M(2	:0) Addr. SER:0x2B; bit 2:0	R
AFGAIN_N(2	:0) Addr. SER:0x2F; bit 2:0	R
Code	Description	
0x0	1.00	
0x1	1.45	
	$exp(\frac{ln(20)}{8} \cdot AFGAIN_x)$	
0x7	13.75	

Table 20: Current gain factor of amplitude control unit

After startup the gain is increased until the set amplitude is obtained. If the input amplitude is altered by the distance between the magnet and sensor being varied, or if there is a change in the supply voltage or temperature, the gain is automatically adjusted. The conversion of the sine signals into high-resolution quadrature signals thus always takes place at optimum amplitude.

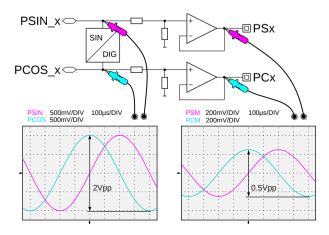


Figure 12: Definition of peak-peak amplitude

Offset compensation

If there is an offset in the sine or cosine signal, possibly caused by a magnet not being precisely adjusted, for instance, this can be corrected by registers VOSS_x and VOSC_x. The output voltage can be shifted in each case by ±63 mV in order to compensate for the offset.

VOSS_M(6:	0) Addr. 0x02; bit 6:0
	0) Addr. 0x08; bit 6:0
- `	
VOSC_M(6:	0) Addr. 0x03; bit 6:0
VOSC_N(6:	0) Addr. 0x09; bit 6:0
Code	Description
0x00	0 mV
0x01	1 mV
0x3F	63 mV
0x40	0 mV
0x41	-1 mV
0x7F	-63 mV

Table 21: Sine and cosine offset adjustment

Phase adjustment

The phase between sine and cosine is adjusted by PH_x (6:0). The compensation range for the master track is approx. $\pm 6^{\circ}$. The compensation range for the nonius track is nearly twice as large and is approx. $\pm 11.25^{\circ}$.

PH_M(6:0)	Addr. 0x04; bit 6:0
Code	Function
0x00	0°
	+6°*PH_M/63
0x3F	+6°
0x40	0°
	-6°*(PH_M-64)/63
0x7F	-6°

Table 22: Master track phase adjustment

PH_N(6:0)	Addr. 0x0A; bit 6:0
Code	Function
0x00	0°
	+ 11.25°*PH_N/63
0x3F	+ 11.25°
0x40	0°
	- 11.25 °*(PH_N-64)/63
0x7F	-11.25°

Table 23: Nonius track phase adjustment

Rev D1, Page 22/66

ANALOG SIGNAL CONDITIONING FLOW: x = M,N

For the purpose of signal conditioning iC-MU has several settings that make internal reference values and the amplified Hall voltages of the individual sensors accessible at the outer pins of PORT B for measurement. This allows the settings of the amplifier (GC_x, GF_x), the amplitude ratio of cosine to sine signal (GX_x), and the offset (VOSS_x, VOSC_x) and phase (PH_x) of the master (x = M) and nonius tracks (x = N) to be directly observed on the oscilloscope.

Note:

For an easy instaltion and setup, the analog and the track offset SPON correction should be done by using the automatic calibration functions of the GUI software (or DLL) available for iC-MU. All necessary steps are described in the iC-MU application note AN3: http://www.ichaus.de/MU AN3 appnote en

Test mode can be programmed using register TEST (address 0x18). The individual test modes are listed in Table 24 and 25.

Note:

MODEB must be set to 0x0 before selecting a test mode

Test Mode output signals					
Mode	TEST	Pin PB0	Pin PB1	Pin PB2	Pin MTC
Normal	0x00				
Analog REF	0x1F	VREF	VBG	IBM	-
Digital CLK	0x26	-	-	-	CLK

Table 24: Test modes for signal conditioning

1. Conditioning the BIAS current

First of all, the internal bias is set. The BIAS current is adjustable in the range of -40 % to +35% to compensate variations of this current and thus differences in characteristics between different iC-MU (e.g. due to manufacturing variations). The nominal value of 200 μA is measured as a short-circuit current at pin PB2 referenced to VNA in test mode 0x1F.

Additionally various internal reference voltages are available for measuring in this test mode. VREF corresponds to half the supply voltage (typically 2.5 V) and is used as a reference voltage for the hall sensor signals. VBG is the internal bandgap reference (1.25 V)

Alternatively the frequency at Pin MTC can be adjusted to 405 kHz ($\frac{fosc}{64}$, see elec. char. no.: 407) using register value CIBM in test mode 0x26, if an analog measuring of the current is not possible.

Test mode output signals					
Mode	TEST	Pin PB0	Pin PB1	Pin PB2	Pin PB3
Normal	0x00				
Analog Master	0x01	PSM	NSM	PCM	NCM
Analog CNV_M	0x03	PSIN_M	NSIN_M	PCOS_M	NCOS_M
Analog Nonius	0x11	PSN	NSN	PCN	NCN
Analog CNV_N	0x13	PSIN_N	NSIN_N	PCOS_N	NCOS_N

Table 25: Testmodes and available output signals

The output signals of the signal path are available as differential signals with a mean voltage of half the supply voltage and can be selected for output according to Table 25.

2. Positioning of the sensor

Next, the sensor should be adjusted in relation to the magnetic code carrier. The value of MPC (Table 52) has to be selected according to the magnetic code carrier. The register values for VOSS_x, VOSC_x, GX_x and PH_x are set to 0. The chip position will now be displaced radially to the magnetic code carrier until the phase shift between the sine and cosine is 90°.

Depending on the mounting of the system it may be necessary to displace iC-MU tangentially to the magnetic code carrier to adjust the amplitude between the sine and cosine signals.

A fine adjustment of the analog signals is made with the registers described in the chapter SIGNAL CONDI-TIONING FOR MASTER AND NONIUS CHANNELS page 20.

The adjustment should be made in the order:

- 1. phase
- 2. amplitude
- 3. offset

3.a Test modes analog master and analog nonius

In these test modes the amplified, conditioned signals are presented to port B. These signals can be charged with a maximum of 1 mA and should not exceed a differential voltage of 0.5 Vpp.

3.b Test mode CNV_x

In this test mode the sensor signals are present at port B as they are internally for further processing on the interpolator. The achievable interpolation accuracy is determined by the quality of signals PSIN_x/NSIN_x and PCOS_x/NCOS_x and can be influenced in this test mode by adjustment of the gain, amplitude ratio,

Rev D1, Page 23/66

offset, and phase. The signals must be tapped at high impedance.

4. Track offset SPON

After the analog adjustment of the master and nonius track the absolute system must be electrically calibrated for maximum adjustment tolerance. See page 39 ff.

Rev D1, Page 24/66

12C INTERFACE AND STARTUP BEHAVIOR

I2C interface / CRC

The multimaster-I2C interface enables read and write access to a serial EEPROM which uses an addressing scheme equal to an 24C01 EEPROM (e.g. 24C02, 256 bytes, 5V type with a 3.3V function, device address 0x50).

The configuration data in the EEPROM in address range 0x00 to 0x20 and 0x30 to 0x3F is checked with a 16 bit CRC (CRC16). The start value for the CRC16 calculation is 1.

CRC16(7:0)	Addr. 0x22; bit 7:0		
CRC16(15:8	3) Addr. 0x21; bit 7:0		
CRC16(7:0)*) Addr. SER: 0x80; bit 7:0			
CRC16(15:8)*) Addr. SER: 0x81; bit 7:0			
Code	Meaning		
	CRC formed with CRC polynomial 0x11021*)		
Notes:	*) Access only via SPI interface **) x ¹⁶ + x ¹² + x ⁵ + 1, start value 0x1		
	This is equivalent to CRC-CCITT/CRC-16		

Table 26: EEPROM data checksum

The offset and preset position for iC-MU's preset sequence is not part of the configuration data area. The data is located in address range 0x23 to 0x2E of the EEPROM and is checked separately with a 8-bit CRC (CRC8). The start value for the CRC8 calculation is 1.

CRC8(7:0)	Addr. 0x2F; bit 7:0		
CRC8(7:0)*)	Addr. SER: 0x82; bit 7:0		
Code	Meaning		
	CRC formed with CRC polynomial 0x197*)		
Notes:	*) Access only via SPI interface **) x ⁸ + x ⁷ + x ⁴ + x ² + x ¹ + 1, start value 0x1		

Table 27: Offset/preset data checksum

iC-MU calculates CRC8 and CRC16 automatically when writing the configuration to the EEPROM. However, an example of a CRC calculation routine is given in Tab. 29. The serial interface allows to access the CRC8 and CRC16 values only in SPI mode. CRC16 and CRC8 are checked on startup. A cyclic check during operation can be configured with NCHK_CRC. With the command CRC_VER (s. Tab. 102) a CRC check can be explicitly requested. An error is signaled by status bit CRC ERR.

NCHK_CRC	Addr. 0x0D; bit 6			
Code	Meaning			
0	cyclical CRC check of CRC16 and CRC8			
1	no cyclical CRC check			
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408			

Table 28: Cyclic CRC check

```
unsigned char ucDataStream = 0;
int iCRC_CRC8Poly = 0x97;
unsigned char ucCRC8;
int i = 0;

ucCRC8 = 1; // start value !!!
for (iReg = 35; iReg < 47; iReg ++)
{
    ucDataStream = ucGetValue(iReg);
    for (i=0; i <=7; i++) {
        if ((ucCRC8 & 0x80) != (ucDataStream & 0x80))
            ucCRC8 = (ucCRC8 << 1) ^ iCRC_CRC8Poly;
    else
        ucCRC8 = (ucCRC8 << 1);
    ucDataStream = ucDataStream << 1;
}</pre>
```

Table 29: Example of CRC calculation routine using CRC8

Rev D1, Page 25/66

Startup behavior

After switching on the power (power-on reset) iC-MU reads the configuration data out from the EEPROM. If an error occurs during the EEPROM data readout (a CRC error or communication fault with the EEPROM), the current read-in is aborted and restarted. Following a third faulty attempt the read-in process is terminated and the internal iC-MU configuration register initialized as in Tab. 31. The addresses are referenced to the register allocation for an register access through the serial interface s. p. 49.

Note: After the third faulty attempt to read-in the configuration data from the EEPROM the default value of MODEA is set to BiSS or SPI depending on the logic level at pin PA0 (PA0=0 \rightarrow BiSS, PA0=1 \rightarrow SPI).

Pin PA0	I/O Interface	Data length
0	BiSS	32 bit (24 bit + 2 bit E/W + 6 bit CRC)
1	SPI	24 bit

Table 30: Default interface depending on PA0

The amplitude control is started after the read-in of the EEPROM. To determine the absolute position a nonius calculation is started. An external multiturn is read-in if configured. If there is an error the multiturn read-in is repeated until no multiturn error occurs. The status bit MT_ERR is set in this case, register communication is possible. The ABZ/UVW-converter is only started if there was no CRC_ERR, EPR_ERR, MT_ERR or MT_CTR error during startup. The startup behaviour is described in Figure 13.

Default values						
Bank	Addr. (serial access)	value	Meaning			
0	0x05	0x88	Amplitude control active (ENAC=1), CIBM = 0%			
0	0x0B	0x02	PA0=0 → BiSS interface (MODEA=0x2), ABZ Incremental (MODEB=0x0)			
0		0x00	PA0=1 → SPI interface (MODEA=0x0), ABZ Incremental (MODEB=0x0)			
0	0x0E	0x06	FILTER activated			
0	0x0F	0x05	32 pole pairs master track			
0	0x10	0x00	no Multiturn, Nonius check active			
0	0x11	0xA5	5 bit Nonius information, 5 Zeros added			
0	0x12	0x00	output with max. resolution			
0	0x13	0xFF	resolution 16384 edges			
0	0x14	0x0F				
0	0x15	0x13	up to 12000 rpm (SS_AB=0x1), 266ns minimum edge distance			
0	0x16	0x10	90° Index, 0.175° Hysteresis			
0	0x17	0x02	1 pole pair commutation			
-	0x78	0x4D	\simeq M			
-	0x79	0x55	\simeq U			
	0x7A	HARD_REV	s. Tab. 92			
-	0x7E	0x69	≃i			
-	0x7F	0x43	\simeq C			
Notes:	all other registers are preset with 0 Register assignment for register access through serial interface s. S. 49					

Table 31: Default configuration without the EEPROM

Rev D1, Page 26/66

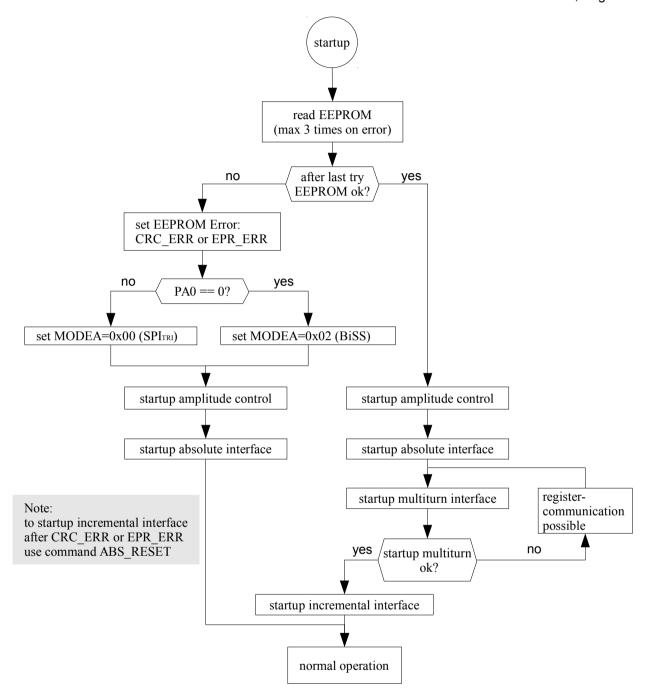


Figure 13: Startup behavior

Rev D1, Page 27/66

CONFIGURABLE I/O INTERFACE

Setting the interfaces

iC-MU has several configurable output modes which can be set using parameters MODEA and MODEB. The pins at port A are set with MODEA. The choice of a serial interface at port A has also effect on the output of error and warning bits in the serial protocol see Table 35.

Note:

With an empty EEPROM or after the third faulty attempt to read-in the configuration data from the EEP-ROM the default value of MODEA is set to BiSS or SPI depending on the logic level at pin PA0 (PA0=0 \rightarrow BiSS, PA0=1 \rightarrow SPI).

MODEA	(2:0)	Addr. 0x0B; bit 2:0			
Code	PA0	PA1	PA2	PA3	Function
0x0	NCS	SCLK	MOSI	MISO	SPI _{TRI}
0x1	NCS	SCLK	MOSI	MISO	SPI
0x2	NPRES	MA	SLI	SLO	BiSS
0x3	NPRES	Α	В	Z	ABZ *)
0x4	NPRES	MA	SLI	SLO	SSI **)
0x5	NPRES	MA	SLI	SLO	SSI+ERRL
0x6	NPRES	MA	SLI	SLO	SSI+ERRH
0x7	NPRES	MA	SLI	SLO	ExtSSI

Note: *) to save this configuration in the EEPROM see command SWITCH page 57 ff.

Table 32: Port A configuration

The pins at port B are set with MODEB.

MODEB	(2:0)	Addr. 0x	0B; bit 6:	:4	
Code	PB0	PB1	PB2	PB3	Function
0x0	Α	В	Z	NER*	ABZ
0x1	U	V	W	NER*	UVW
0x2	STEP	DIR	NCLR	NER*	Step/Direction
0x3	CW	CCW	NCLR	NER*	CW/CCW Incremental
0x4	NSN	PSN	PCN	NCN	SIN/COS Nonius
0x5	NSM	PSM	PCM	NCM	SIN/COS Master
0x6	-	-	-	-	reserved
0x7	-	-	-	-	tristate
Note: *) Pin PB3 (signal NER) is a open-collector output					

Table 33: Port B configuration

Note:

It is not possible to select ABZ at port A and ABZ, Step/Direction or CW/CCW at port B simultaneously.

In operating modes ABZ, UVW, step/direction, and CW/CCW the position is output incrementally. In setting SIN/COS Master the master track analog signal is switched directly to the analog drivers. The signals of the nonius track are available on the drivers with setting SIN/COS Nonius.

^{**)} MT sensor communication not possible (GET_MT = 0)

Rev D1, Page 28/66

Serial interface Configuring the data format and data length

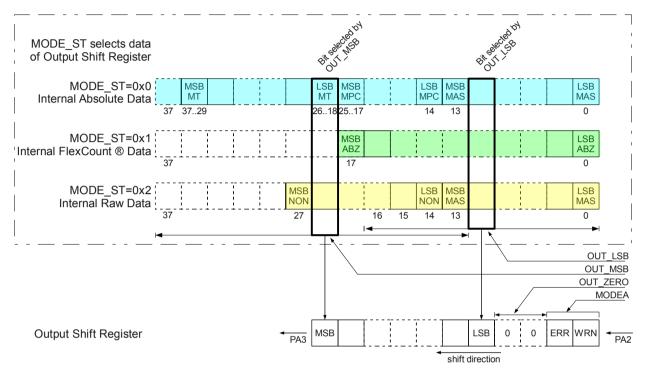


Figure 14: Determining the output data length

The structure of the output shift register is shown in Figure 14. The abbreviation MT stands for the multiturn data, MPC is short for the number of master periods in bit, ABZ for the data whose resolution is specified by the parameter RESABZ (Table 72), NON for the data of the nonius track and MAS for the data of the master track. The numbering of the user data starts at the LSB with zero. OUT_MSB and OUT_LSB determine which part of the user data is output by the output shift register.

MODE_ST selects the type of user data to be output through the output shift register.

MODE_ST(1:0) Addr. 0x12; bit 5:4
Code	Description
0x0	output absolute position
0x1	output position in user resolution*) (FlexCount®)
0x2	output raw-data of Master- and Nonius track**)
0x3	reserved
Note:	*) resolution defined by RESABZ (Table 72) **) MPC must be \(\neq 12)

Table 34: Selection of output data

The number of output bits is determined by parameters OUT_MSB, OUT_LSB, OUT_ZERO and the error/warning bits (see Figure 14 and Table 35):

Data length = 14 + OUT_MSB - OUT_LSB + OUT_ZERO + optional ERR/WRN (depending on MODEA)

There is an exception for the calculation of the output data length. If parameter MPC=12, OUT_LSB = 0 and OUT_MSB > 0x02 the number of output bits is given by:

data_length_2 = OUT_MSB + OUT_ZERO + ERR/WRN (depending on MODEA) - 2

MODEA(2:0) Addr	0x0B; bit 2:	:0	
Function	Error		Warning	
	low active	high active	low active	high active
SPI	-	-	-	-
BiSS	✓	-	✓	-
SSI	-	-	-	-
SSI+ERRL	✓	-	-	-
SSI+ERRH	-	✓	-	-
ExtSSI	✓	-	✓	-

Table 35: MODEA: error/warning-bit within serial protocols

OUT_MSB configures the bit of the user data which is output as MSB at pin PA3.

Rev D1, Page 29/66

OUT_MSB(4	4:0) Addr. 0x11; bit 4:0
Code	Description
0x00	MSB = Bit 13
0x01	MSB = Bit 14
0x18	MSB = Bit 37

Table 36: Selection of shift register MSB

OUT_LSB determines the LSB of the user data being output through the output shift register.

OUT_LSB(3	OUT_LSB(3:0) Addr. 0x12; bit 3:0		
Code	Condition	Description	
0x0	MPC = 12, OUT_MSB > 0x02	LSB = Bit 16	
	MPC ≠ 12	LSB = Bit 0	
0x1	-	LSB = Bit 1	
0x2	-	LSB = Bit 2	
0xD	-	LSB = Bit 13	
0xE	OUT_MSB > 0x00	LSB = Bit 14	
0xF	OUT_MSB > 0x01	LSB = Bit 15	

Table 37: Selection of shift register LSB

With OUT_ZERO additional zeros to be inserted between the user data and the error/warning bit can be

configured. Parameter OUT_ZERO can be used to achieve multiples of 8 bits when sensor data is output through the SPI interface.

OUT_ZERO	(2:0) Addr. 0x11; bit 7:5
Code	Description
0x0	no additional '0' Bit
0x1	1 additional '0' Bit
0x7	7 additional '0'-Bits

Table 38: Selection of additional ZEROs

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of direction of rotation
1	inversion of rotation
Note:	no effect in MODE_ST = 2 (raw-data) for the data output through the serial interface

Table 39: Inversion of the direction of rotation (for MT and ST data)

Rev D1, Page 30/66

BiSS C Interface

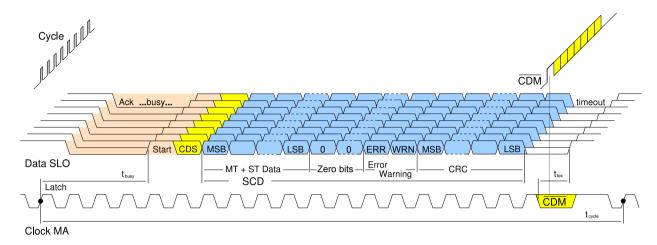


Figure 15: Example of BiSS line signals

MODEA	
Code	Description
0x2	BiSS-C

Table 40: MODEA: BiSS

The BiSS C interface serial bit stream is binary coded. The error and warning bit is low active. Transmission of sensor and register data is implemented. iC-MU needs no processing time, therefore t_{busy} is one master clock cycle. For further information regarding the BiSS-C-protocol visit www.biss-interface.com.

A communication frame ends when the MA pin clock cycles stop. After the last edge on MA the communication timeout begins. The timeout is adaptive and the timeout period t_{out} is calculated based on the first MA edges as shown in Figure 4.

In BiSS protocol iC-MU uses fixed CRC polynomials, see Table 41. The single cycle data (SCD), i.e. the primary data which is newly generated and completely transmitted in each cycle, contains the position data (optional multiturn + singleturn) and the error and warning bit. The CRC value is output inverted.

data- channel*)	CRC HEX Code	Polynomial
SCD (sensor)	0x43	$x^6 + x^1 + x^0$
CDM, CDS (register)	0x13	x ⁴ +x ¹ +x ⁰
Note:	*) explanation s. BiSS-C s	specification

Table 41: BiSS CRC polynomials

Rev D1, Page 31/66

SSI interface

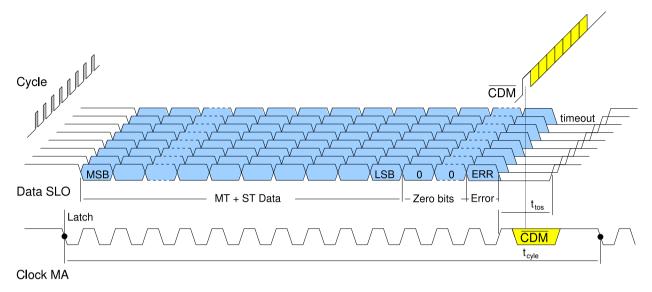


Figure 16: Example of SSI line signals (MODEA=0x5/0x6) with optional unidirectional register communication

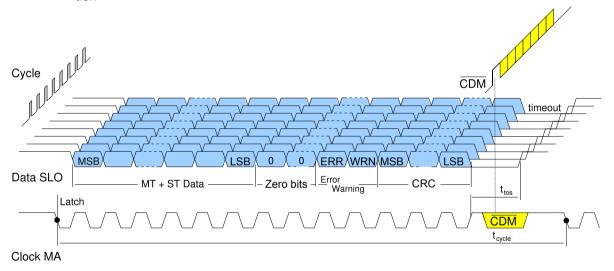


Figure 17: Example of extended SSI line signals (MODEA=0x7, ExtSSI)

MODEA	
Code	Description
0x4	Standard SSI, no error-bit
0x5	Standard SSI, error-bit low active
0x6	Standard SSI, error-bit high active
0x7	extended SSI, data-package like BiSS-C

Table 42: MODEA: SSI

The SSI interface of iC-MU can handle sensor data communication and unidirectional register communication (Advanced SSI protocol see Figure 16). The timeout is

adaptive and the timeout period t_{out} is calculated based on the first MA edges as shown in Figure 6.

In standard SSI mode singleturn data and, optionally, multiturn data, an error, and a stop zero can be transmitted. In extended SSI mode (ExtSSI) the multiturn data (optional), singleturn data, error, warning, and CRC can be read out. All data is sent with the MSB first and is equivalent to the data package that is output through BiSS.

In SSI mode the sensor data can be output in binary or Gray code.

Rev D1, Page 32/66

GSSI	Addr. 0x12; bit 7
Code	Data format
0	binary coded
1	Gray coded

Table 43: Data format (for MT and ST data)

SSI interface ring operation can be activated for the repeated output of position data in SSI protocol. In this mode position data output is repeated cycle by cycle separated by a zero-bit until the internal timeout t_{tos} (p. 12) is reached. After t_{tos} has elapsed a new request can

be made for position data. By checking the repeated position data for equality, SSI ring operation mode enables any possible transmission errors to be detected. If RSSI is deactivated zeros are subsequently output after the position data output.

RSSI	Addr. 0x12; bit 6
Code	Ring operation
0	normal output
1	Ring operation

Table 44: Ring operation

Rev D1, Page 33/66

SPI Interface: general description

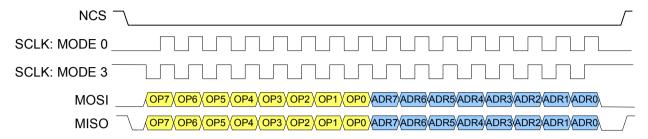


Figure 18: SPI transmission SPI-Mode 0 and 3, using opcode Read REGISTER(single) as an example

MODEA		
Code	Description	
0x0	SPI _{TRI}	
0x1	SPI	

Table 45: MODEA: SPI

In mode SPI_{TRI} MISO (Pin PA3) is set to tristate if the slave is not selected by the master, i.e. NCS=1. This function is used for a parallel SPI bus configuration (Figure 19).

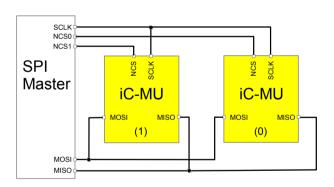


Figure 19: Example configuration SPI bus with 2 parallel Slaves

SPI modes 0 and 3 are supported, i.e. idle level of SCLK 0 or 1, acceptance of data on a rising edge. Data is sent in packages of 8 bits and with the MSB first (see Figure 18). Each data transmission starts with the master sending an opcode (Table 46) to the slave.

The following describes the typical sequence of an SPI data transmission, taking the command **Read REGIS-TER (single)** as an example (see Figure 18):

- 1. The master initializes a transmission with a falling edge at NCS.
- 2. iC-MU passes the level on from MOSI to MISO.

- 3. The master transmits the opcode OP and address ADR via MOSI; iC-MU immediately outputs OP and ADR via MISO.
- 4. The master terminates the command with a rising edge at NCS.
- iC-MU switches its MISO output to 1 (MODEA=0x1) or tristate (MODEA=0x0).

OPCODE		
Code	Description	
0xB0	ACTIVATE	
0xA6	SDAD-transmission (sensor data)	
0xF5	SDAD Status (no latch)	
0x97	Read REGISTER(single)	
0xD2	Write REGISTER (single)	
0xAD	REGISTER status/data	

Table 46: SPI OPCODEs

For the setup to be compatible with SPI protocol, when setting the sensor data length for the command "SDAD transmission" with parameters OUT_MSB, OUT_LSB, and OUT_ZERO, it must be ensured that the output data length is a multiple of 8 bits.

SPI Interface: Command ACTIVATE

Each iC-MU has one RACTIVE and one PACTIVE register. These registers are used pairwise to configure the register data channel and the sensor/actuator data channel of a slave.

Using the **ACTIVATE** command, the register and sensor data channels of the connected slaves can be switched on and off. The command causes all slaves to switch their RACTIVE and PACTIVE registers between MOSI and MISO and set them to 0 (slaves in daisy chain connection, Figure 22). The register and

Rev D1, Page 34/66

sensor/actuator data channels can be switched on and off with data bytes following the OPCODE.

After startup of iC-MU RACTIVE and PACTIVE is set to 1

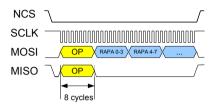


Figure 20: Set ACTIVATE: RACTIVE/PACTIVE (several slaves)

The **ACTIVATE** command resets the bits FAIL, VALID, BUSY, and DISMISS in the SPI-STATUS byte (see Table 50).

RACTIVE		
Code	Description	
0	Register communication deactivated	
1	Register communication activated*)	
Note	*) default after startup	

Table 47: RACTIVE

If RACTIVE is not set, on commands Read REGISTER (single), Write REGISTER (single), REGISTER status/data the ERROR bit is set in the SPI-STATUS byte (see Table 50) to indicate that the command has not been executed. At MISO the slave immediately outputs the data transmitted by the master via MOSI.

PACTIVE		
Code	Description	
0	Sensor data channel deactivated	
1	Sensor data channel activated*)	
Note	*) default after startup	

Table 48: PACTIVE

If PACTIVE is not set, on commands **SDAD status** and **SDAD transmission** the ERROR bit is set in the SPI-STATUS byte (see Table 50) to indicate that the command has not been executed. At MISO the slave immediately outputs the data transmitted by the master via MOSI.

If only one slave is connected up with one register and one sensor data channel, it must be ensured that the RACTIVE and PACTIVE bits come last in the data byte.

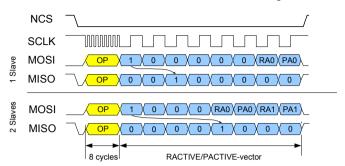


Figure 21: Set ACTIVATE: RACTIVE/PACTIVE (Example with one and two slaves (daisy chain))

An example for a daisy chain wiring of 2 SPI slaves is given in Figure 22. In order to do register communication (Read REGISTER (single), Write REGISTER (single), REGISTER status/data) with e.g. slave (1) the register communication has to be enabled explicitly for this slave and disabled for slave (0) with command ACTIVATE and parameter RACTIVE.

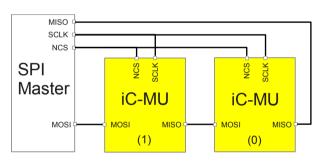


Figure 22: Example configuration with 2 Slaves (daisy chain)

SPI interface: Command SDAD transmission

iC-MU latches the absolute position on the first rising edge at SCLK, when NCS is at zero (e.g. Figure 23 LATCH). Because iC-MU can output the sensor data (SD) immediately, the master can transmit the **SDAD transmission** command directly. The sensor data shift register (the size of which is 8 to 40 bits in multiples of 8 using iC-MU) is switched and clocked out between MOSI and MISO.

If invalid data is sampled in the shift register, the ER-ROR bit is set in the SPI-STATUS byte (see Table 50) and the output data bytes are set to zero.

Rev D1, Page 35/66

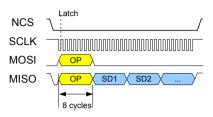


Figure 23: SDAD transmission: read SD

Note: iC-MU latches the absolute position on the first rising edge at SCLK, when NCS is at zero (e.g. Figure 23 - LATCH).

SPI interface: Command SDAD status

If the master does not know the processing time of the connected slaves, it can request sensor data using the command **SDAD status**. The command causes:

- All slaves activated via PACTIVE to switch their SVALID register between MOSI and MISO.
- The next request for sensor data started with the first rising edge at SCLK of the next SPI communication is ignored by the slave.

The end of conversion is signaled by SVALID (SV). Using this command, the master can poll to the end of conversion. The sensor data is read out via the command **SDAD transmission**.

SVALID	
Code	Description
0	Sensor data invalid
1	Sensor data valid

Table 49: SVALID

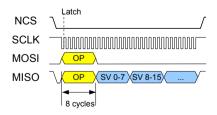


Figure 24: SDAD status

If only one slave is connected, the corresponding SVALID bit (SV0) is placed at bit position 7 in the SVALID byte.

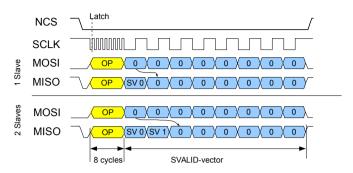


Figure 25: SDAD status (Example with one and two slaves)

Figure 26 shows the interaction of the two commands SDAD Status and SDAD transmission. It is not necessary to start each sensor data communication with the command SDAD Status (1). iC-MU has no processing time and can therefore directly output valid sensor data. Because of that the command sequence can start with SDAD-transmission (2). Following this, the command REGISTER status/data should be executed to detect an unsuccessful SPI communication.

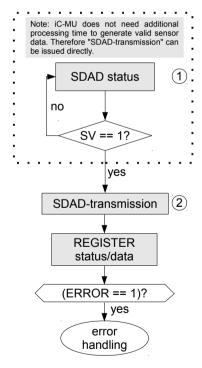


Figure 26: Example sequence of the commands SDAD Status/SDAD-transmission

SPI interface: Command Read REGISTER (single)

This command enables register data to be read out from the slave byte by byte.

The master first transmits the **Read REGISTER** (single) command and then address ADR. The slave immediately outputs the command and address at MISO.

Rev D1, Page 36/66

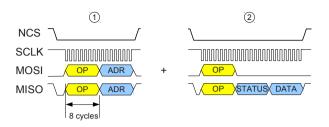


Figure 27: Read REGISTER (single): set the read address (1) + command REGISTER status/data to read-out data (2)

Following this, using the **REGISTER status/data** command (see page 36) the master can poll until the validity of the DATA following the SPI-STATUS byte is signaled via SPI-STATUS.

SPI interface: Command Write REGISTER (single) This command enables data to be written to the slave byte by byte.

The master first transmits the **Write REGISTER** (single) command and then address ADR and the data (DATA). The slave immediately outputs the command, address, and data at MISO.

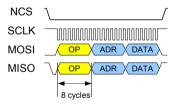


Figure 28: Write REGISTER (single); set write address and data

Using the **REGISTER status/data** command, the master can poll to the end of communication (signaled via the SPI-STATUS byte).

SPI interface: Command REGISTER status/data

The **REGISTER status/data** command can be used to request the status of the last register communication and/or the last data transmission. The SPI-STATUS byte contains the information summarized in Table 50.

SPI-STATUS				
Bit	Name	Description of the status report		
7	ERROR	Opcode not implemented, Sensor data was invalid on readout		
64	-	Reserved		
Status bits of the register communication				
3	DISMISS	Address rejected		
2	FAIL	Data request has failed		
1	BUSY	Slave is busy with a request		
0	VALID	DATA is valid		
Note	Display logic: 1 = true, 0 = false			

Table 50: Communication status byte

All SPI status bits are updated with each register access. The exception to the rule is the ERROR bit; this bit indicates whether an error occurred during the last SPI-communication with the slave.

The master transmits the **REGISTER status/data** opcode. The slave immediately passes the opcode on to MISO. The slave then transmits the SPI-STATUS byte and a DATA byte.

Following the commands **Read REGISTER** (single) and **Write REGISTER** (single), the validity of the DATA byte is signaled with the VALID status bit.

The requested data byte is returned via DATA following the **Read REGISTER** (single) command. Following the **Write REGISTER** (single) command, the data to be written is repeated in the DATA byte. With all other opcodes, the DATA byte is not defined.

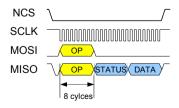


Figure 29: REGISTER status/data

Figure 30 shows the interaction of the commands **REG-ISTER read/write** and **REGISTER status/data**.

Rev D1, Page 37/66

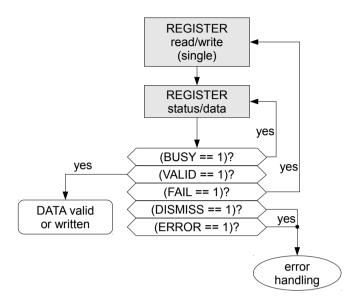


Figure 30: Example sequence of commands REG-ISTER read/write and REGISTER status/data

Rev D1, Page 38/66

CONVERTER AND NONIUS CALCULATION

Converter principle

The system consist of two real-time tracking converters, each with a resolution of 12 bits for the master track and nonius track. Above the maximal permissible input frequency the status bits FRQ_CNV is set. The tracking converter can't follow the input signal any more. With a filter setting of type FILT1 and bigger an increased resolution of 14 bits is available.

A digital filter can be configured with FILT to reduce the noise of the digital output signals. Using this the digital angle values of the tracking converter can be filtered.

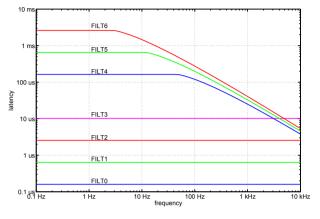


Figure 32: Filter latency

FILT Addr. 0x0E; bit 2:0 Noise sup-Latency Interpol. Code Тур MAS/NON (see Figure 32) pression 0x0 FILT0 0 dB 12 bit < 1 µs FILT1 15 dB < 1 µs 14 bit 0x1 FILT2 21 dB 0x2 $2.5 \, \mu s$ 14 bit 0x3 FILT3 27 dB 10 µs 14 bit FILT4 39 dB $f_{sin} < 50 \, Hz$: 164 µs 0x4 14 bit $f_{sin} = 1 \, kHz$: 25 µs 0x5 FILT5 45 dB 14 bit $f_{sin} < 12 \, Hz$: 650 µs $f_{sin} = 1 \text{ kHz}$: 33 µs 0x6FILT6 51 dB $f_{sin} < 3$ Hz: 2.6 ms 14 bit $f_{sin} = 1 \, kHz$: 41 µs Note Influences on the max. rotation speed with incremental output signals are shown in table 78

Table 51: Digital filter features

30 10 10 88 al 1 FILT5 FILT4 FILT3 FILT2 FILT1 FILT0

Figure 31: Phase relationship of the filters

10¹ 10 sine frequency [Hz]

Synchronization mode

Table 52 lists the configurable master period counts and the resulting bit lengths for nonius synchronization, and the synchronization bit length used. The parameter MPC defines thus the nonius system and has to be chosen according to the magnetic code carrier. If MPC is switched during operation, command ABS_RESET must be executed and the track offset values must be calibrated again.

MPC(3:0)	Addr	. 0x0F; bit 3:	0	
Code	Master period count	Nonius period count	Bit length	Synchroni- sation bit length
0x4	16	15	4	8
0x5	32	31	5	7
0x6	64	63	6	6
for MU as N	for MU as Nonius-Multiturn *)			
0x7	128	127	7	5
0x8	256	255	8	4
0x9	512	511	9	3
0xA	1024	1023	10	2
0xB	2048	2047	11	1
0xC	4096	4095	12	0
Note	*) see page	43		

Table 52: Master period count and the resulting bit lengths

LIN selects the hall sensor arrangement to linear or rotative for axial or radial/linear scanning (see table 53).

Rev D1, Page 39/66

LIN	Addr. 0x0E; bit 4	
Code	Hall sensor arrangement	Type of target magnetization
0	Rotative	Axial (e.g. MU2S 30-32N)
1	Linear	Radial (e.g. MU7S 25-32N) or Linear (e.g. MUxL)

Table 53: Selection of linear/rotative hall sensors

An offset between the nonius track and the master track within one revolution can be adjusted with SPO_BASE and SPO \times (x=0-14).

The following formula describes how the error curve based on the raw data from the master and nonius track can be calculated. 2^{MPC} is the number of sine periods of the measuring distance.

$$TOL_{SPON} = RAW_{MASTER} - RAW_{NONIUS} * \frac{2^{MPC}}{2^{MPC} - 1}$$

The maximum tolerable phase deviation for a 2-track nonius system is shown in Table 54. For the tolerable phase deviation of a 3-track nonius system please refer to Table 68 page 43.

		Permissible Max. Phase Deviation
Periods/revolution		[given in degree per signalperiod of 360°]
Master	Nonius	Master ↔ Nonius
16	15	+/- 9.84°
32	31	+/- 4.92°
64	63	+/- 2.46°

Table 54: Tolerable phase deviation for the master versus the nonius track of a 2 track nonius system (with reference to 360°, electrical)

An offset correction curve can be specified with SPO_BASE and SPO_x (x = 0-14). SPO_BASE is the start-value. SPO_0 to SPO_14 can be interpreted as slope-values. A change in the slope of the offset function can be made each 22.5°. The slope value SPO_15 is computed automatically by iC-MU. To do this the following condition must be met:

$$\sum_{x=0}^{14} SPO_x = \{-7...7\}$$

The offset value between to slopes (e.g. SPO_0 and SPO_1) is interpolated. The computed offset is added to the converted result of the nonius track prior to synchronization and is used to calibrate the nonius to the master track. An offset value is chosen by the absolute position given by the nonius difference (master-nonius).

SPO_BASE	(3:0) Addr. 0x19; bit 3:0
SPO_BASE	(3:0) Addr. SER:0x52; bit 3:0
Code	Starting point referred to 1 revolution
0x0	$0 * (22.5^{\circ}/2^{MPC})$
0x7	7 * (22.5°/2 ^{MPC})
0x8	-8 * (22.5°/2 ^{MPC})
0x9	-7 * (22.5°/2 ^{MPC})
0xF	-1 * (22.5°/2 ^{MPC})

Table 55: Nonius track offset start value

SPO_0(3:0)	Addr. 0x19; bit 7:4 Addr. SER: 0x52
SPO_1(3:0)	Addr. 0x1A; bit 3:0 Addr. SER: 0x53
SPO_2(3:0)	Addr. 0x1A; bit 7:4 Addr. SER: 0x53
SPO_3(3:0)	Addr. 0x1B; bit 3:0 Addr. SER: 0x54
SPO_4(3:0)	Addr. 0x1B; bit 7:4 Addr. SER: 0x54
SPO_5(3:0)	Addr. 0x1C; bit 3:0 Addr. SER: 0x55
SPO_6(3:0)	Addr. 0x1C; bit 7:4 Addr. SER: 0x55
SPO_7(3:0)	Addr. 0x1D; bit 3:0 Addr. SER: 0x56
SPO_8(3:0)	Addr. 0x1D; bit 7:4 Addr. SER: 0x56
SPO_9(3:0)	Addr. 0x1E; bit 3:0 Addr. SER: 0x57
SPO_10(3:0) Addr. 0x1E; bit 7:4 Addr. SER: 0x57
SPO_11(3:0) Addr. 0x1F; bit 3:0 Addr. SER: 0x58
SPO_12(3:0	0) Addr. 0x1F; bit 7:4 Addr. SER: 0x58
SPO_13(3:0) Addr. 0x20; bit 3:0 Addr. SER: 0x59
SPO_14(3:0) Addr. 0x20; bit 7:4 Addr. SER: 0x59
Code	Slope referred to 1 revolution
0x0	0 * (22.5°/2 ^{MPC})
0x7	7 * (22.5°/2 ^{MPC})
0x8	-8 * (22.5°/2 ^{MPC})
0x9	-7 * (22.5°/2 ^{MPC})
0xF	-1 * (22.5°/2 ^{MPC})
Note	$\sum_{x=0}^{14} SPO_x = \{-77\} * (22.5^{\circ}/2^{MPC})$

Table 56: Nonius track offset slopes

SPO_15(3:0	Addr. SER:0x5A; bit 3:0
Code	Slope
0x0	-
	is automatically computed: $-\sum_{x=0}^{14} SPO_x$
0xF	-
Note	internal register, not readable via serial interface

Table 57: Nonius track offset slope (is automatically computed)

The principle is shown in Figure 33. The red curve corresponds to the error curve of the nonius difference absolute within 360°. By taking the blue marked SPO_x curve it is shown, that the nonius difference can be changed in a way that the resulting green curve is in the valid synchronisation range. It can be seen that

Rev D1, Page 40/66

an error within 22.5° (in the Figure between 67.5° and 90°) can not be corrected. For SPO_0 the range of a possible slope change is exemplary shown.

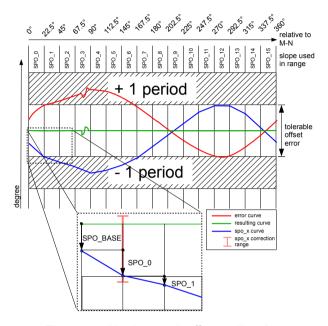


Figure 33: Nonius track offset calibration

Following the first nonius synchronization the number of excessed periods is counted and output. Using NCHK_NON the system can be configured to check the internal period counter against the period given by the code disc at regular intervals. Command NON_VER explicitly requests nonius verification. If an error is found during verification of the nonius, bit NON_CTR is set in status register STATUS1.

Figure 34 describes the principle of nonius synchronization with verification, with φ representing the respective digitized angle of the relevant track.

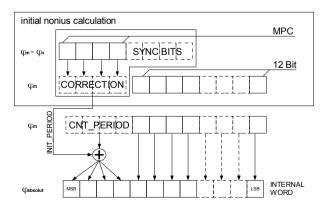


Figure 34: Principle of nonius synchronization

NCHK_NON	Addr. 0x0D; bit 5
Code	Description
0	automatic period verification
1	no automatic period verification
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408

Table 58: Automatic nonius period verification

The nonius data and incremental interface can be automatically reset with ACRM_RES if the master amplitude is too low. The incremental section is reset as soon as the amplitude control unit indicates that the master amplitude is too low (AM_MIN occurs, see Table 96). The ABZ-interface shows position 0 as default. When the master amplitude is again in its set range, a new nonius calculation is carried out and the incremental section is restarted.

ACRM_RES	Addr. 0x0D; bit 4
Code	Description
0	no automatic reset
1	automatic reset active

Table 59: Automatic Reset triggered by AM_MIN

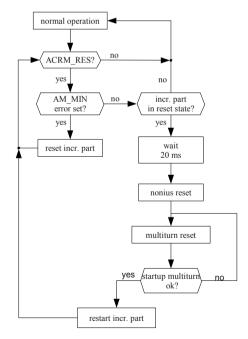


Figure 35: Automatic reset ACRM_RES

Rev D1, Page 41/66

MT INTERFACE

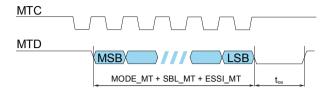


Figure 36: Example of multiturn SSI line signals

Configuration of the Multiturn interface

iC-MU can read and synchronize binary data from an external SSI sensor through the serial multiturn interface. On startup the first data value read in determines the start value of the internal MT counter. After startup the multiturn counter counts the ST cycles. If there is an error reading the external multiturn during startup, the read-in will be repeated.

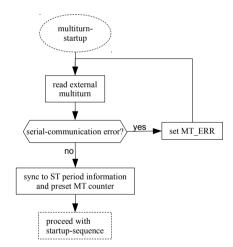


Figure 37: Error handling during startup

If the MT interface is not used (MODE_MT = 0x0), the internal 24-bit MT counter can extend the singleturn information to include the counted ST cycles.

For exclusive multiturn systems a 4, 8, 12, 16 or 18-bit multiturn data value can be read in (MODE_MT = 0xB-0xE).

There is also the possibility to interpret a part of the external multiturn data value as singleturn data (MODE_MT = 0x1-0xA). This influences the incremental output signals, UVW commutation signals and data output in MODE_ST = 0x01 (FlexCount®). For further information see **Construction of a Multiturn system with two iC-MU** S. 43.

MODE_MT(3:0) Addr. 0x10; bit 3:0			
Code	Function	Code	Function
0x0	no external data	0x8	4 *) + 12 bit
0x1	1 *) bit	0x9	5 *) + 12 bit
0x2	2 *) bit	0xA	6 *) + 12 bit
0x3	3 *) bit	0xB	4 bit
0x4	4 *) bit	0xC	8 bit
0x5	5 *) bit	0xD	12 bit
0x6	6 *) bit	0xE	16 bit
0x7	3 *) + 12 bit	0xF	18 bit
Notes:	*) data interpreted	as ST	
	If MPC \geq 0x07 that or 0xD	n MODE_MT	has to be set to 0x0

Table 60: MT interface operating mode

For synchronization a synchronization bit length must be set with SBL_MT. Synchronization takes place between the external multiturn data read in and the ST period information counted internally (see Fig. 39). Synchronization can take place automatically within the relevant phase tolerances.

SBL_MT(1:0) Addr. 0x10; bit 5:4		
Code	MT synchronisation bit length	synchronisation tolerance (ST-resolution)
0x0	1 bit	±90°
0x1	2 bit	±90°
0x2	3 bit	\pm 135 $^{\circ}$
0x3	4 bit	± 157,5°

Table 61: MT synchronization bit length

Figure 38 shows the principle of a 2 bit MT synchronization for ideal signals (without indication of synchronization tolerance limits).

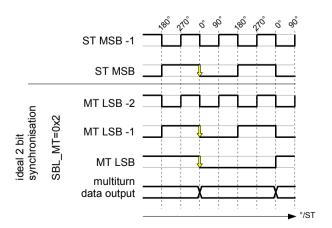


Figure 38: Principle of 2 bit MT synchronization

Rev D1, Page 42/66

The direction of rotation of the read multiturn data can be inverted using parameter ROT_MT.

ROT_MT	Addr. 0x0E; bit 5
Code	Function
0	no inversion of code direction
1	inversion of code direction

Table 62: Inverted direction of rotation of external multiturn

The parameter ESSI_MT configures the evaluation of an optional error-bit send by the external multiturn device.

ESSI_MT	Addr. 0x0E; bit 7:6
Code	Function
0x0	no error bit
0x1	1 error-bit low active
0x2	reserved
0x3	1 error-bit high active

Table 63: Evaluation of an error-bit of the external multiturn

The total data length of the external read multiturn data word is determined by:

data_length_ext_mt = Bits(MODE_MT) + Bits(SBL_MT) + Bits(ESSI_MT)

The parameter SPO_MT allows to balance an existing static offset between the singleturn and the multiturn. The offset is added before the synchronization of the read multiturn data (see Fig. 39).

SPO_MT	Addr. 0x0F; bit 7:4
Code	Function
0x0	
	multiturn offset
0xF	

Table 64: Offset of external multiturn

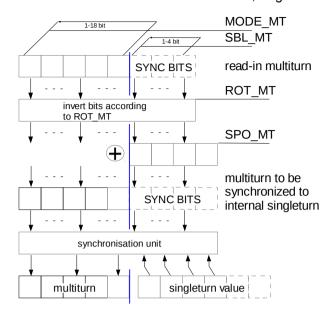


Figure 39: Parameters to configure external multiturn

CHK_MT can be used to verify the counted multiturn at regular intervals. Verification can also be requested using command MT_VER. A multiturn verification error (comparison of the internal MT counter with the external multiturn data) is reported on status bit MT_CTR.

CHK_MT	Addr. 0x10; bit 6
Code	Function
0	no verification
1	periodical verification
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408

Table 65: Multiturn verification

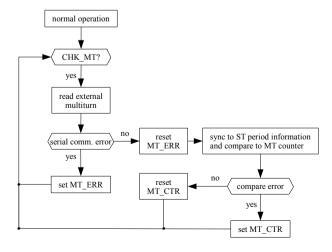


Figure 40: Error handling in normal operation with cyclic verification of the period counter

Rev D1, Page 43/66

Construction of a Multiturn system with two iC-MU

A 3 track nonius system can be build using two iC-MU. The singleturn iC-MU (1) can be configured to interpret 3, 4, 5, or 6 bits of the read multiturn data as singleturn data (ST) (see Table 60). The output through the incremental interface, the UVW interface and the serial interface in MODE_ST = 0x1 (FlexCount) of iC-MU (1) is then absolute with this additional information.

The construction of such a system is shown as an example in Figure 41 and the configuration in Table 66.

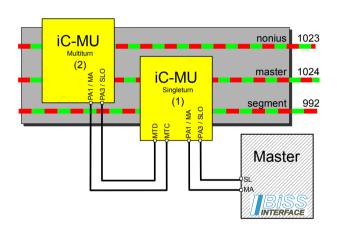


Figure 41: 3-track nonius with 2 iC-MU

iC-MU (1): s	iC-MU (1): singleturn		
Parameter	Value	Description	
MPC	0x5	5 Bit ST periods	
MODE_MT	0x5	5 Bit ST periods via multiturn	
SBL_MT	0x3	4 Bit synchronisation of read multiturn data	
iC-MU (2): n	nultiturn		
Parameter	Value	Description	
MPC	0xA	10 Bit periods	
MODE_MT	0x0	no additional multiturn data	
MODE_ST	0x0	output of internal absolute data	
OUT_MSB	0xA	MSB output configuration 9 Bit output data while having 10 Bit periods	
OUT_LSB	0xF	LSB output configuration 9 Bit output data while having 10 Bit periods	

Table 66: Configuration example for the 3-track nonius system of Fig.41

Table 67 shows the possible settings for a 3-track nonius systems with 2 iC-MU and the resulting periods/revolution of the tracks. The maximum phase deviation of the tracks is summarized in Table 68.

MPC		Periods/revolution		ST Periods [Bit]		
(2)	(1)	Master	Segm.	Nonius	from MT(2)	from ST(1)
0x7	0x4	128	120	127	3	4
0x8	0x4	256	240	255	4	4
0x9	0x5	512	496	511	4	5
0xA	0x5	1024	992	1023	5	5
0xB	0x6	2048	2016	2047	5	6
0xC	0x6	4096	4032	4095	6	6

Table 67: Settings for a 3-track nonius system using 2 iC-MU

Periods/revolution		Permissible Max. p	phase deviation signalperiod of 360°]	
Master	Segm.	Nonius	$\begin{array}{ccc} \text{Master} & \leftrightarrow & \text{Segm.} \\ \text{(1)} \end{array}$	$\begin{array}{c} \text{Master} & \leftrightarrow & \text{Non.*}) \\ \text{(2)} \end{array}$
128	120	127	+/-9.84°	+/-19.68°
256	240	255	+/-9.84°	+/-9.84°
512	496	511	+/-4.92°	+/-9.84°
1024	992	1023	+/-4.92°	+/-4.92°
2048	2016	2047	+/-2.46°	+/-4.92°
4096	4032	4095	+/-2.46°	+/-2.46°
Note	*) with S	BBL_MT=	0x3	

Table 68: Tolerable phase deviation for the master versus the nonius or segment track of a 3-track nonius system (with reference to 360°, electrical)

Figure 42 shows the principle of the synchronisation of the data from iC-MU (2) to iC-MU (1).

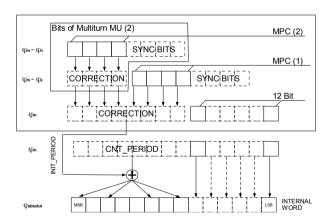


Figure 42: Principle of the synchronisation of a 3-track nonius system using 2 iC-MU without further multiturn data

To facilitate the initial configuration of an iC-MU as a SSI multiturn device the command SWITCH can be used (see page 57). The singleturn iC-MU (1) in Figure 41 has to enable the direct communication to the multiturn sensor by setting GET_MT to 1. The configuration of iC-MU (2) can take place using the BiSS protocol. After the configuration of the external multiturn MODEA_NEW and RPL_NEW are used to set the target configuration of MODEA and RPL. After that the

Rev D1, Page 44/66

command SWITCH is executed. By reading STATUS1 it is possible to control if there was an error while executing the command. After the next startup or after the execution of the command SOFT_RESET iC-MU starts with the interface configurated with MODEA_NEW and RPL NEW.

MT Interface Daisy Chain

The MT interface daisy chain mode gives direct access to an external multiturn sensor for calibration purposes.

MODEA	
Code	Function
0x2	BiSS
0x5	SSI+ERRL
0x6	SSI+ERRH
0x7	ExtSSI

Table 69: MT Interface Daisy Chain: Possible MODEA configuration

Making use of the BiSS Interface bus capabilities, iC-MU can connect the external multiturn sensor to the BiSS master controller in modes MODEA = 0x02 (BiSS) and MODEA = 0x05-0x07 (SSI with Error bit and ExtSSI; additional condition RSSI = 1) when GET_MT is enabled.

To this end input pin MA (PA1) receiving the BiSS master's clock signal is fed through to output pin MTC and the input pin MTD is activated in place of the input pin SLI (PA2). Upon enabling this mode the single cycle timeout (see Fig. 3) must have elapsed and an additional init command must be carried out by the BiSS master, before it can run the first register communication.

Note:

Additional condition RSSI = 1 when using GET_MT and MODEA = 0x05, 0x06 or 0x07.

Hint:

First set GET_MT than RSSI to activate direct communication to Multiturn Sensor in SSI modes.

Example: external multiturn sensor built with iC-MU is connected to the MT interface of a first iC-MU, preparing the singleturn data. With GET_MT enabled, the external multiturn can then be addressed via BiSS ID 0 and the singleturn via BiSS ID 1. This temporal chain operation simplifies device parametrization during encoder manufacturing.

GET_MT	Addr. 0x10; bit 7
Code	Function
0	Disabled
1	MT interface daisy chain

Table 70: Direct BiSS communication enable for MT sensor via I/O Interface

Rev D1, Page 45/66

INCREMENTAL OUTPUT ABZ, STEP/DIRECTION AND CW/CCW

MODEA	
Code	Description
0x3	ABZ
MODEB	
Code	Description
0x0	ABZ
0x2	Step/Direction
0x3	CW/CCW Incremental
Notes:	It is not possible to select an incremental interface on MODEA and MODEB simultaneously

Table 71: MODEA/MODEB: ABZ, step/direction and CW/CCW

The resolution of incremental signals ABZ can be programmed for each singleturn cycle within a range of 4 to 262,144 edges using the internal FlexCount®. The number of master periods which is equivalent to a singleturn cycle is defined by the settings in register MPC (Table 52).

RESABZ(7:	0) Addr. 0x13; bit 7	:0
RESABZ(15	5:0) Addr. 0x14; bit 7	:0
Code	Resolution	Interpolation factor
0x0000	4	1
0x0001	8	2
0xFFFF	262144	65536
Notes:	For non-binary resolution the relative error increase	

Table 72: FlexCount®- Resolution

Figure 43 shows the ABZ, step/direction, and CW/CCW signals. The length of a signal A or B cycle is defined by ϕ_{360AB} as a range between two rising edges of an A or B signal.

 ϕ_{hys} represents the hysteresis which must be exceeded before further edges are generated at the incremental interface.

Minimum edge distance $t_{\rm mtd}$ is the minimum time which must have elapsed before another event can be output at the incremental interface.

The length of the Z pulse with setting ZLEN = 0x00 is defined by φ_{z90} .

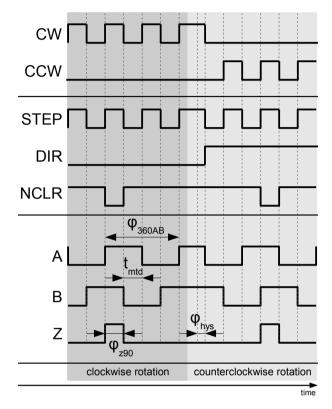


Figure 43: Definition of the ABZ, STEP/DIR, and CW/CCW signals

The phase position of the incremental output signals can be inverted using the relevant configuration bit INV_x (x = A,B,Z).

INV_A	Addr. 0x16; bit 2
Code	A/STEP/CW-Signal
0	normal
1	inversion

Table 73: Inversion A-Signal

INV_B	Addr. 0x16; bit 1
Code	B/DIR/CCW-Signal
0	normal
1	inversion

Table 74: Inversion B-Signal

INV_Z	Addr. 0x16; bit 0
Code	Z/NCLR-Signal
0	normal
1	inversion

Table 75: Inversion Z-Signal

Rev D1, Page 46/66

Index pulse Z can be programmed in four lengths. The position of the index pulse in relation to the A/B signals is shown in Figure 44.

LENZ(1:0)	Addr. 0x16; bit 7:6
Code	Z-pulse length
0x0	90°
0x1	180°
0x2	270°
0x3	360°

Table 76: Index pulse length

_ <u>A</u>						
В						
Z 3 <u>60°</u>						
Z 2 <u>70°</u>						
Z 1 <u>80°</u>						
Z <u>90°</u>						_
-2	-1	0	1	2	3	4

Figure 44: Index pulse length settings

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of code direction
1	inversion of code direction

Table 77: Inverted direction of rotation

SS AB(1:0) Addr. 0x15; bit 5:4 Code FILT max. rotation speed *) max MPC = 0x6res. $MPC = 0x4 \mid MPC = 0x5$ (64/63)(16/15)(32/31)2¹⁸ 0x0 0x0 don't use don't use 1500 rpm > 0x1 6000 rpm 6000 rpm 6000 rpm 217 0x1 3000 rpm 3000 rpm 0x0 don't use $\geq 0x1$ 12000 rpm 12000 rpm 6000 rpm 2¹⁶ 0x2 6000 rpm 6000 rpm 6000 rpm 0x0 ≥ 0x1 24000 rpm 12000 rpm 6000 rpm 2¹⁵ 0x3 0x0 12000 rpm 12000 rpm 6000 rpm ≥ 0x1 24000 rpm 12000 rpm 6000 rpm *) FRQAB = 0x0 Note:

Table 78: System AB step size and limitation of rotation frequency

The minimum edge distance $t_{\rm mtd}$ of the ABZ, STEP/DIR or CW/CCW interface can be limited by setting the maximum output frequency with FRQAB. It can be used to adjust the output frequency to a frequency limit given by an external ABZ, STEP/DIR or CW/CCW counter device. The FRQ_ABZ status bit is set in the case of an unacceptable high speed.

FRQAB(2:0)) Addr. 0x15; bit 2:	0
Code	Output frequency AB	Edge distance t _{mtd}
0x0	6.25 MHz	40 ns
0x1	3.13 MHz	80 ns
0x2	1.56 MHz	160 ns
0x3	781.25 kHz	320 ns
0x4	390.63 kHz	640 ns
0x5	195.31 kHz	1.28 µs
0x6	48.83 kHz	5.12 µs
0x7	12.2 kHz	20.48 µs

Table 79: AB output frequency

Parameter SS_AB must be configured depending on the maximum speed. With a filter setting of FILT = 0x00 (Table 51), correspondingly higher SS_AB step size values must be programmed. The maximum possible resolution of the incremental count signal is reduced according to the set step size.

The incremental counter has an integrated hysteresis which prevents multiple switching of the incremental signals at the reversing point. Hysteresis ϕ_{hys} must first be exceeded before edges can again be generated at A or B. This hysteresis can be set within a range of 0° to 0.35° according to Table 80 and is referenced to 360° of a singleturn cycle.

Rev D1, Page 47/66

CHYS_AB(1:0) Addr. 0x16; bit 5:4			
Code	Hysteresis	parameter SS_AB	
0x0	0.0014°	0x0	
0x0	0.0041°	0x1	
0x0	0.0096°	0x2	
0x0	0.021°	0x3	
0x1	0.175°	d.c.	
0x2	0.35°	d.c.	
0x3	0.7°	d.c.	
Notes:	d.c.: don't care		

Table 80: Hysteresis with an inverted direction of rotation

The parameter ENIF_AUTO selects whether at startup the incremental interface is enabled after the converter has found its operating point or if the counting to the absolute angle can be seen at the incremental interface.

ENIF_AUTO	Addr. 0x15; bit 4	
Code	Description	
0	counting to operating point visible	
1	counting to operating point not visible	

Table 81: Incremental interface enable

See the chapter on the preset function (p. 61) to set the offset for ABZ output.

Rev D1, Page 48/66

UVW COMMUTATION SIGNALS

MODEB	
Code	Description
0x1	UVW

Table 82: MODEB: UVW

iC-MU can generate commutation signals for BLDC motors from 1 up to 16 pole pairs. The hysteresis is set fixed to 0.0879° referenced to a mechanical revolution.

Figure 45 shows the commutation sequence for a motor with 6 pole pairs. Here, a commutation sequence spanning an angle of $\phi_{360\text{UVW}}$ repeats itself 6 times within one mechanical revolution of the motor. The phase shift between the commutation signals is 120°.

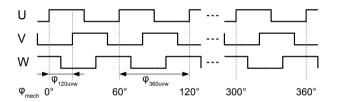


Figure 45: commutation signals UVW

Using parameter PPUVW the number of commutation sequences per mechanical revolution can be set.

PPUVW(5:0) Addr. 0x17;	bit 5:0	
Code	number of pole pairs	Code	number of pole pairs
0x02	1 pole pair	0x1A	9 pole pairs
0x05	2 pole pairs	0x1D	10 pole pairs
80x0	3 pole pairs	0x20	11 pole pairs
0x0B	4 pole pairs	0x23	12 pole pairs
0x0E	5 pole pairs	0x26	13 pole pairs
0x11	6 pole pairs	0x29	14 pole pairs
0x14	7 pole pairs	0x2C	15 pole pairs
0x17	8 pole pairs	0x2F	16 pole pairs

Table 83: Number of commutation signal pole pairs

The sequence of the commutation signals can be selected by $\phi_{120\text{UVW}}$ as in Figure 45 or with a distance of 60° between two neighboring rising edges referenced to one UVW cycle using parameter PP60UVW.

PP60UVW	Addr. 0x16; bit 3		
Code	Phase UVW signals		
0	120° phase shift		
1	60° phase shift		

Table 84: Commutation signal phase length

Register OFF_UVW is used to set the start angle and compensate for the offset between the winding of the BLDC and the Hall sensor signals. This angle can be set with 12 bits.

Note:

After startup or the commands SOFT_RESET and ABS_RESET the OFF_UVW values are amended to include the nonius data, with a configured multiturn updated with the multiturn data, and stored as OFF COM in the internal RAM.

OFF_UVW(3:0) Addr. 0x28; bit 7:4	
OFF_UVW(11:4) Addr. 0x29; bit 7:0	
OFF_UVW(3:0) Addr. SER:0x4B; bit 7:4	
OFF_UVW(11:4) Addr. SER:0x4C; bit 7:0	
Code	Offset UVW signals	
0x000	0.00° mech	
0x001	0.09° mech	
	360.0° mech 4096 · OFF_UVW	
0xFFF	359.9° mech	

Table 85: Commutation signal start angle

OFF_COM(3:0)	Addr. SER:0x23;	bit 7:4	R
OFF_COM(11:4)	Addr. SER:0x24;	bit 7:0	R
Code	Desci	ription		
0x000				
	start a	•	n signal (automatically	
0xFFF				

Table 86: Commutation signal start angle amended by the nonius/MT

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of direction of rotation
1	inversion of rotation

Table 87: Inverted direction of rotation

Rev D1, Page 49/66

REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)

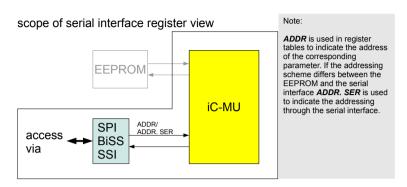


Figure 46: Scope of register mapping serial interface

The distribution of addresses in iC-MU corresponds to the document BiSS C Protocol Description which can be downloaded at www.biss-interface.com.

iC-MU supports an addressing scheme using banks. Therefore the internal address space is divided into banks of 64 bytes each. The address sections visible via the I/O interface recognizes a "dynamic" section (addresses 0x00 to 0x3F) and a "static" section which is permanently visible (addresses 0x40 to 0x7F). The static address section is always visible independent of the bank currently selected. Figure 47 illustrates how the banks selected by BANKSEL are addressed.

BANKSEL(4	4:0) Addr. SER:0x40; bit 4:0			
Code	Description			
0x0				
	Selection of the memory bank			
0x1F				

Table 88: Register to select a memory bank

The abbreviation *Addr. SER* used in the register tables of the specification of the iC-MU stands for the addressing of this register through the serial interface.

The address translation for the addressable memory areas via the bank register to the EEPROM addresses is shown in Table 89. Figure 48 shows a schematical overview of the register/memory mapping.

Code	Bank	Memory location during operation	Mode
CONF	0	internal register	iC-MU configuration data
EDS	1	E2P: 0x040-0x07F	Electronic-Data-Sheet
	4	E2P: 0x100-0x13F	
USER	5	E2P: 0x140-0x17F	OEM data, free user area
	31	E2P: 0x7C0-0x7FF	

Table 89: Address translation Addr Ser: 0x00-0x3F

After startup the BANKSEL register is set to 0.

CONF: Bank 0, Addresses 0x00-0x3F								
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	GC_I	M(1:0)			GF_N	M(5:0)		•
0x01			GX_M(6:0)					
0x02			VOSS_M(6:0)					
0x03			VOSC_M(6:0)					
0x04			PH_M(6:0)					
0x05	ENAC					CIBN	Л(3:0)	
0x06	GC_	N(1:0) GF_N(5:0)						
0x07			GX_N(6:0)					
0x08			VOSS_N(6:0)					

Rev D1, Page 50/66

Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SER		2.0				2., 2		
0x09		VOSC_N(6:0)						
0x0A					PH_N(6:0)			
0x0B			MODEB(2:0))			MODEA(2:0)	
0x0C				CFGE	W(7:0)	ı		
0x0D	ACC_STAT	NCHK_CRC	NCHK_NON	ACRM_RES			EMTD(2:0)	
0x0E	ESSI_	MT(1:0)	ROT_MT	LIN			FILT(2:0)	
0x0F		SPO_I	ИТ(3:0)	ı		MPC	2(3:0)	
0x10	GET_MT	CHK_MT	SBL_N	ЛT(1:0)		MODE_	MT(3:0)	
0x11	С	UT_ZERO(2	0)		O	OUT_MSB(4:0	0)	
0x12	GSSI	RSSI	MODE_	ST(1:0)		OUT_L	SB(3:0)	
0x13				RESA	BZ(7:0)			
0x14					BZ(15:8)			
0x15	ROT		SS_A	B(1:0)	ENIF_AUTO		FRQAB(2:0)	
0x16	LEN	Z(1:0)	CHYS_	AB(1:0)	PP60UVW	INV_A	INV_B	INV_Z
0x17	RPL	RPL(1:0) PPUVW(5:0)						
0x18	TEST(7:0)							
0x19								
				RESE	RVED			
0x1D								
0x1E		OFF_A	BZ(3:0)			RESE	RVED	
0x1F				OFF_A	BZ(11:4)			
0x20				OFF_PC	S*(19:12)			
0x21				OFF_PC	S*(27:20)			
0x22				OFF_PC	S*(35:28)			
0x23		OFF_CC	DM**(3:0)			RESE	RVED	
0x24				OFF_CC	M**(11:4)			
0x25				PA0_C	ONF(7:0)			
0x26								
				RESE	RVED			
0x2A								
0x2B		RESERVED		ACGAIN	N_M(1:0)	Α	FGAIN_M(2:0))
0x2C								
				RESE	RVED			
0x2E								
0x2F		RESERVED		ACGAII	N_N(1:0)	Α	FGAIN_N(2:0	0)
0x30								
		RESERVED						
0x3F								
Note:	_				titurn informat	tion		_
	** OFF_UV	W value ame	nded to inclu	de nonius in	ormation			

Table 90: Register mapping bank 0, addresses 0x00-0x3F (access via serial interface)

OFF_POS* are the offset values (OFF_ABZ) automatically changed by the period information of the initial nonius calculation and if configured by the external multiturn data. OFF_POS can thus be seen as a start value for the internally counted ST period and MT data.

Rev D1, Page 51/66

۸ ۵۵۰	D:+ 7	Dit G	Dit E	Dit 4	Dit 3	Dit 0	D:+ 4	D:+ 0
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
)x40		BANKSEL(4:0)						
x41		•		EDSBA	ANK(7:0)			
0x42				PROFIL	.E_ID(7:0)			
)x43				PROFILI	E_ID(15:8)			
0x44				SERI	AL(7:0)			
0x45				SERIA	AL(15:8)			
0x46				SERIA	L(23:16)			
0x47				SERIA	L(31:24)			
)x48				OFF_AI	BZ(19:12)			
0x49				OFF_AI	BZ(27:20)			
0x4A				OFF_AI	BZ(35:28)			
0x4B		OFF_U	JVW(3:0)			RES	ERVED	
0x4C				OFF_U	VW(11:4)			
0x4D		PRES_	POS(3:0)			RESE	ERVED	
0x4E				_	POS(11:4)			
0x4F				_	OS(19:12)			
0x50					OS(27:20)			
0x51				PRES_P	OS(35:28)			
0x52		SPO	_0(3:0)			SPO_B	ASE(3:0)	
0x53		SPO	_2(3:0)		SPO_1(3:0)			
0x54		SPO	_4(3:0)		SPO_3(3:0)			
0x55		SPO	_6(3:0)			SPO.	_5(3:0)	
0x56		SPO	_8(3:0)			SPO.	_7(3:0)	
0x57			_10(3:0)		SPO_9(3:0)			
0x58			_12(3:0)				_11(3:0)	
0x59		SPO ₋	_14(3:0)			SPO_	_13(3:0)	
0x5A					ESET(7:0)			
0x5B					START(7:0)			
0x5C					START(7:0)			
0x5D					1_END(7:0)			
0x5E					EVID(7:0)			
0x5F				I2C_RE	TRY(7:0)			
0x60								
			US	EK_EXCHAN	IGE_REGIST	ERS		
0x6F								
0x70				5-0-	-D\			
0x71				RESI	ERVED			
0x72	EVENT COUNTY CO							
0x73	EVENT_COUNT(7:0)							
)x74					REV(7:0)			
0x75					MU(7:0)			
0x76					JS0(7:0)			
0x77					JS1(7:0)			
0x78					ID(7:0)			
0x79					ID(15:8)			
0x7A		DEV_ID(23:16) DEV_ID(31:24)						

Rev D1, Page 52/66

Static pa	Static part: Addresses 0x40-0xBF							
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x7C				DEV_ID	(39:32)			
0x7D				DEV_ID	0(47:40)			
0x7E				MFG_	D(7:0)			
0x7F	MFG_ID(15:8)							
0x80*)				CRC1	6(7:0)			
0x81*)		CRC16(15:8)						
0x82*)	CRC8(7:0)							
0x83*)								
	RESERVED							
0xBF*)								
*) Acces	s on address	s space SER	> 0x7F only	via SPI interf	ace possible			

Table 91: Register mapping bank 0-31, addresses 0x40-0xBF (access via serial interface)

The current iC-MU hardware version can be read out through HARD_REV.

HARD_REV	HARD_REV(7:0) Addr. SER: 0x74; bit 7:0					
Code	Chip version	Addressing scheme using banks				
0x02	iC-MU 0	-				
0x03	iC-MU 1	-				
0x04	iC-MU Z	-				
0x05	iC-MU Y	x				
0x06	iC-MU Y1	x				
0x07	iC-MU Y2	x				

Table 92: HARD_REV

Rev D1, Page 53/66

Address sections/Register protection level

Register access can be restricted via RPL (see Table 93). RPL = 0x2/0x3 selects a shipping mode with limited access which can be set back to RPL = 0x0. To set back RPL the content of Bank: 0, Addr. SER: 0x17 has to be written to RPL_RESET.

RPL(1:0)	Addr. 0x17; bit 7:	6
Code	Mode	Access restriction
0x0	Configuration mode, no restrictions	RP0
0x1	Shipping mode, without command I2C_COM, reset is not possible	RP1
0x2	Shipping mode, with command I2C_COM, reset to RP0 possible	RP1
0x3	Shipping mode, without command I2C_COM, reset to RP0 possible	RP1

Table 93: Register access control

RPL_RESET(7:0) Addr. SER:0x5A; bit 7:0		
Code	Description		
0x00			
	Set back value for RPL		
0xFF			

Table 94: Set back value for RPL

Sections CONF, EDS and USER are protected at different levels in shipping mode for read and write access (see Figure 47).

RPL(1:0)	Addr. 0x	Addr. 0x17; bit 7:6		
	Section			
RPL*	CONF	EDS	USER	
RP0	r/w	r/w	r/w	
RP1	n/a	r	r/w	
Note	*) RPL: Registe	*) RPL: Register Protection Level		
	n/a: iC-MU denies access to those register addresses			
	r: Registers are readable			
	w: Registers are	e writeable		

Table 95: Register Read/Write Protection Levels

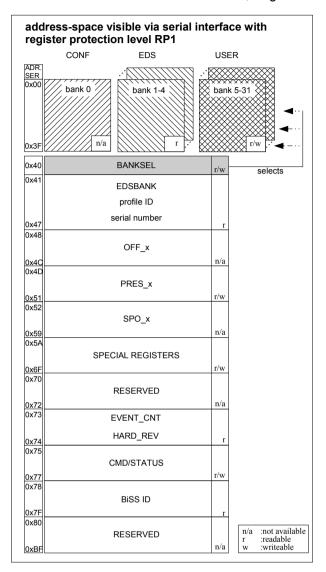


Figure 47: Principle of bank-wise memory addressing and access restrictions with register protection level RP1

Rev D1, Page 54/66

Overview Register access: memory mapping, Register protection levels

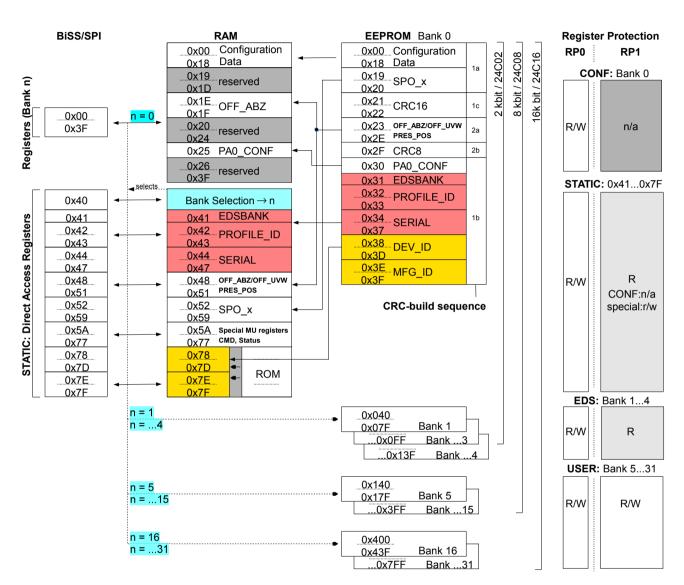


Figure 48: Register access with memory mapping

Rev D1, Page 55/66

STATUS REGISTER AND ERROR MONITORING

Status register

Various Status-information can be read out via status bytes STATUS0 and STATUS1.

STAT	US0(7:0)	Addr. SER: 0x76; bit 7:0	R
Bit	Name	Description of status message	
4	STUP	Startup iC-MU	
3	AN_MAX	Signal error*: clipping (nonius track)	
2	AN_MIN	Signal error*: poor level (nonius track)	
1	AM_MAX	Signal error*: clipping (master track)	
0	AM_MIN	Signal error*: poor level (master track)	
	Notes	Error indication logic: 1 = true, 0 = false, * for signal thresholds see elec. char. no. and 509	508

Table 96: Status register 0

STAT	US1(7:0)	Addr. SER: 0x77; bit 7:0
Bit	Name	Description of status message
7	CRC_ERR	Invalid check sum internal RAM
6	EPR_ERR	I2C communication error: - No EEPROM - I2C communication error
5	MT_ERR	Multiturn communication error
4	MT_CTR	Multiturn data consistency error: counted multiturn ↔ external MT data
3	NON_CTR	Period counter consistency error: counted period ↔ calculated Nonius position
2	FRQ_ABZ	Excessive signal frequency for ABZ-converter
1	FRQ_CNV	Excessive signal frequency for internal 12 Bit converter
0	CMD_EXE	Command execution in progress
	Notes	Error indication logic: 1 = true, 0 = false

Table 97: Status register 1

ACC_STAT configures, if the status registers show the actual or the accumulated status information.

If the accumulated status is configured, the status bits are maintained until the status register is read out or the command ABS_RESET or SOFT_RESET are executed. This is valid except for EPR_ERR, STUP and CMD_EXE. These bits are set in the status register independent of the ACC_STAT configuration while the status information is active. The status register can be accessed independently of the internal operating state.

ACC_STAT	Addr. 0x0D; bit 7		
Code	Description		
0	Output of actual status information		
1	Output of accumulated status information		

Table 98: Output configuration of status register

Note:

A read access to the reserved addresses SER: 0x3D and 0x3E also clears the accumulated status information STATUS0 and STATUS1 if ACC_STAT is set to 1

Error and warning bit configuration

The output and the polarity of the error and warning bit within the different serial protocols (MODEA Table 32) can be found in Table 99. Messages are allocated to the error and warning bit by parameter CFGEW according to Table 100.

MODEA(2:0) Addr. 0x0B; bit 2:0				
Function	Error		Warning	
	low active	high active	low active	high active
SPI	-	-	-	-
BiSS	х	-	х	-
SSI	-	-	-	-
SSI+ERRL	х	-	-	-
SSI+ERRH	-	х	-	-
ExtSSI	х	-	х	-

Table 99: MODEA: error/warning-bit within serial protocols

CFGEW(7:0) Addr. 0x0C; bit 7:0		
Bit	Visibility for error bit		
7	MT_ERR/MT_CTR		
6	NON_CTR		
5	Ax_MAX und Ax_MIN		
4	EPR_ERR		
3	CRC_ERR		
2	CMD_EXE		
Bit	Visibility for warning bit		
1	FRQ_CNV/FRQ_ABZ		
0	Ax_MAX und Ax_MIN		
Notes	x = M, N		
	Encoding: 0 = message enabled, 1 = message disabled		

Table 100: Error and warning bit configuration

If an error pin is configured using MODEB (Table 33), an internal error (see status register, ACC_STAT configuration and error bit configuration with CFGEW) is signaled by the NER pin (PB3). In that case pin PB3 is a open-collector output. The minimum message time for I/O pin NER can be set by EMTD.

Rev D1, Page 56/66

EMTD(2:0)	Addr. 0x0D; bit 2:0			
Code	min. disp. time Code min. disp. tim			
0x0	0 ms	0x4	50 ms	
0x1	12.5 ms	0x5	62.5 ms	
0x2	25 ms	0x6	75 ms	
0x3	37.5 ms	0x7	87.5 ms	

Table 101: Minimum error display time

Rev D1, Page 57/66

COMMAND REGISTER

Description of implemented commands

An implemented command is executed depending on the written data value.

CMD_MU(7:0)	Addr. SER: 0x75; bi	it 7:0
Code	Command	Explanation
0x00	reserved	no function
0x01	WRITE_ALL	Write internal configuration and Offset values to EEPROM
0x02	WRITE_OFF	Write internal Offset values to EEPROM
0x03	ABS_RESET	Reset of Absolute value (including ABZ-part), takes typ. 10 ms
0x04	NON_VER	Verification of actual position by doing a nonius calculation
0x05	MT_RESET	New read in and synchronisation of multiturn value
0x06	MT_VER	Read in of multiturn and verification of counted multiturn value
0x07	SOFT_RESET	startup with read in of EEPROM
0x08	SOFT_PRES	Set output to preset
0x09	SOFT_E2P_PRES	Set output to preset and save offset values to EEPROM
0x0A	I2C_COM	start I2C communication
0x0B	EVENT_COUNT	increment event counter by 1
0x0C	SWITCH	Writes all configurations parameters without offsets to EEPROM. MODEA/RPL will be exchanged with MODEA_NEW/RPL_NEW during write operation
0x0D	CRC_VER	Verification of CRC16 and CRC8
0x0E	CRC_CALC	Recalculate internal CRC16 and CRC8 values
0x0F	SET_MTC	Set MTC-Pin *)
0x10	RES_MTC	Reset MTC-Pin *)
0x11	reserved	no function
0xFF		
Note:	*) MODE_MT=0x00	

Table 102: Implemented commands

WRITE_ALL stores the internal configuration and offset/preset values to the EEPROM. CRC16 and CRC8 are automatically updated.

WRITE_OFF only stores the offset/preset data area to the EEPROM. CRC8 is automatically updated.

Command **ABS_RESET** initiates a redefinition of the absolute value. A new nonius calculation is started. If a multiturn is configured, this is read in and synchronized. Offset values OFF_ABZ/OFF_UVW are amended to include the ST period and MT information and are stored as OFF_POS and OFF_COM. The ABZ/UVW converter is restarted.

Command **NON_VER** initiates a nonius calculation and the computed value is compared to the current counted period. If there is a discrepancy, error bit NON_CTR is set in status register STATUS1.

With command MT_RESET an external multiturn is read in anew and synchronized. Offset values OFF ABZ and OFF UVW are changed to include the

newly read-in multiturn data and stored as OFF_POS and OFF_COM.

Attention:

The ABZ/UVW converter is not restarted automatically with the command **MT_RESET**. If part of the multiturn data is used for the singleturn information, ABS_RESET has to be executed additionally.

With command **MT_VER** an external multiturn is read in and the counted multiturn value is verified. If there is a discrepancy, error bit MT_CTR is set in status register STATUS1.

With command **SOFT_RESET** internal finite state machines and counters are reset. The EEPROM is read in anew. A redefinition of the absolute value is initiated (see **ABS_RESET**)

Command **SOFT_PRES** initiates a preset sequence (cf. page 61) with preset values PRES_POS. The internal offset values OFF ABZ are changed to set the output

Rev D1, Page 58/66

value to the value given by PRES_POS. The internal CRC8 is automatically updated.

Command **SOFT_E2P_PRES** initiates a preset sequence (cf. page 61) with preset values PRES_POS. The altered offset values OFF_ABZ are stored in the EEPROM. CRC8 is automatically updated.

Command I2C_COM initiates communication with a I2C device (RPL=0x00 and 0x02). Prior to this the following parameters must be configured:

- I2C DEVID
- I2C_RAM_START
- · I2C RAM END
- I2C_DEV_START

The device ID is written to I2C_DEVID (see Table 103). If an error occurs while communicating with an external I2C device up to 3 new communication attempts are started by iC-MU.

I2C_RAM_START defines the start address in the internal RAM which in case of a

- write access: marks the begin of the data area that holds the data to be written
- read access: marks the begin of the data area where the data read from the I2C device is written to

According to this I2C_RAM_END defines the end address of the data area in the internal RAM. The number of bytes NUM_BYTES to be read/written are determined by the difference between I2C_RAM_END and I2C_RAM_START.

I2C_DEV_START defines the start address of the I2C device from which NUM_BYTES bytes should be read-/written.

The USER_EXCHANGE_REGISTERS (see Table 91) can be used for the data-exchange with the I2C device.

I2C_DEVID	(7:0) Addr. SER:0x5E; bit 7:0				
Code	Meaning				
0xA0	write EEPROM				
0xA1	read EEPROM				
0xC0	write iC-PVL (status/commands)				
0xC1	read iC-PVL (status/commands)				

Table 103: Examples of I2C Device IDs

I2C_RAM_ST	ART Addr. SER: 0x5C; bit 7:0	
Code	Description	
0x00		
	I2C-RAM start address	
0xFF		

Table 104: I2C-RAM start address

I2C_RAM_E	Addr. SER: 0x5D; bit 7:0
Code	Description
0x00	
	I2C-RAM end address
0xFF	

Table 105: I2C-RAM end address

I2C_DEV_START	Addr. SER: 0x5B; bit 7:0
Code	Description
0x00	
	I2C device start address
0xFF	

Table 106: I2C device start address

With command **EVENT_COUNT** the value of register EVENT_COUNT is incremented by 1.

EVENT_COUNT(7:	o) Addr. SER:0x73; bit 7:0
Code	Description
0x0	
	Event counter
0xFF	

Table 107: Event counter

The command **SWITCH** makes it possible to write configurations of MODEA and RPL into the EEP-ROM which inhibit further register communications (e.g. MODEA=ABZ).

Note: RPL must be set to 0x0 before starting the command.

MODEA_NEW and RPL_NEW are used to set the target configuration of MODEA and RPL (e.g. ABZ, no RPL). On executing the command SWITCH MODEA and RPL are set to the target values and the configuration without the offsets is written to the EEPROM. Finally MODEA and RPL are set back to the original values. This makes it possible to control the success of the EEPROM write process by reading STATUS1 (EPR_ERR should not be set).

Rev D1, Page 59/66

Note: CRC_ERR is set after command execution if there is the cyclic CRC check configured by NCHK_CRC=0 and the target values of MODEA and RPL differ from the originals values.

iC-MU starts with the interface and register protection level configured with MODEA_NEW and RPL_NEW after the next startup or after the execution of command SOFT_RESET.

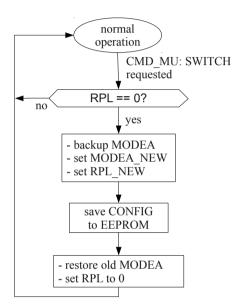


Figure 49: Event sequence of command SWITCH

MODEA_NEW Addr. SER: 0x60; bit 2:0					
Code	PA0	PA1	PA2	PA3	Function
0x0	NCS	SCLK	MOSI	MISO	SPI _{TRI}
0x1	NCS	SCLK	MOSI	MISO	SPI
0x2	NPRES	MA	SLI	SLO	BiSS
0x3	NPRES	Α	В	Z	ABZ
0x4	NPRES	MA	SLI	SLO	SSI
0x5	NPRES	MA	SLI	SLO	SSI+ERRL
0x6	NPRES	MA	SLI	SLO	SSI+ERRH
0x7	NPRES	MA	SLI	SLO	ExtSSI

Table 108: Target value of MODEA for the command SWITCH

RPL_NEW	Addr. SER: 0x60; bit 7:6			
Code	Registerpro- tection	Command I2C_COM	Reset to RP0 possible	
0x0	RP0	x	x	
0x1	RP1	-	-	
0x2	RP1	x	x	
0x3	RP1	-	x	

Table 109: Target value for RPL for the command SWITCH

Command **CRC_VER** starts a verification of CRC16 and CRC8. In case of an crc error, the CRC_ERR status bit is set.

Command **CRC_CALC** starts a recalculation of CRC16 and CRC8. CRC16 and CRC8 are saved internally in iC-MU and are used for later CRC verifications.

The command **SET_MTC** sets pin MTC to logic level 1. **RES_MTC** resets pin MTC to logic level 0. iC-MU saves the actual logic level of pin MTD to MTD_STATUS before it sets or resets pin MTC. To use these commands MODE_MT has to be set to 0x0, i.e. no external multiturn is configured.

MTD_STATE	US Addr. SER: 0x60; bit 0
Code	Description
0	MTD Pin was 0, before setting/resetting MTC
1	MTD Pin was 1, before setting/resetting MTC

Table 110: Status of pin MTD before command execution SET MTC and RES MTC

Configurable NPRES Pin

A configurable NPRES pin can be used at pin PA0 if MODEA is set to 0x2-0x7. This pin can be used to execute a command configured by PA0_CONF on a falling edge of NPRES.

PA0_CONF	(7:0) Addr. 0x30; bit 7:0	
PA0_CONF	(7:0) Addr. SER: 0x25; bit 7:0	Bank 0
Code	Command	
0x00	NO_FUNCTION	
0x01	WRITE_ALL	
0x02	WRITE_OFF	
0x03	ABS_RESET	
0x04	NON_VER	
0x05	MT_RESET	
0x06	MT_VER	
0x07	SOFT_RESET	
0x08	SOFT_PRES	
0x09	SOFT_E2P_PRES	
0x0A	I2C_COM	
0x0B EVENT_COUNT		
0x0C	SWITCH	
0x0D	CRC_VER	
0x0E	CRC_CALC	
0x0F	SET_MTC	
0x10	RES_MTC	
0xFF	no function	

Table 111: Command to be executed on falling edge of NPRES

Rev D1, Page 60/66

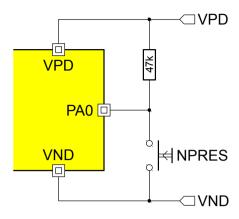


Figure 50: External circuitry for NPRES functionality

Rev D1, Page 61/66

POSITION OFFSET VALUES AND PRESET FUNCTION

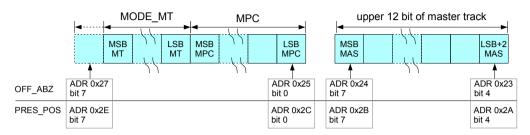


Figure 51: Position of the parameters OFF_ABZ and PRES_POS with respect to configured multiturn (MODE_MT), periods (MPC) and converter resolution

OFF_ABZ holds the position offset values stored in the EEPROM. After startup or the commands SOFT_RESET and ABS_RESET the OFF_ABZ values are amended to include the nonius data and the multiturn data (in case an external multiturn is configured) and stored as OFF_POS in the internal RAM. Value OFF_POS is subtracted with each conversion from the internally synchronized result.

OFF ABZ(3	:0)	Addr. 0x23: bit 7:4	
OFF ABZ(1	,	Addr. 0x24: bit 7:0	
- `	,	,	
OFF_ABZ(1	,	Addr. 0x25; bit 7:0	
OFF_ABZ(2	7:20)	Addr. 0x26; bit 7:0	
OFF_ABZ(3	5:28)	Addr. 0x27; bit 7:0	
OFF_ABZ(3	:0)	Addr. SER:0x1E; bit 7:4	Bank0
OFF_ABZ(1	1:4)	Addr. SER:0x1F; bit 7:0	Bank0
OFF_ABZ(1	9:12)	Addr. SER:0x48; bit 7:0	
OFF_ABZ(2	7:20)	Addr. SER:0x49; bit 7:0	
OFF_ABZ(3	5:28)	Addr. SER:0x4A; bit 7:0	
Code	Code Description		
0x00000000			
	Offset	position relative to absolute position	1
0xFFFFFFFF			

Table 112: Output offset position, relative to absolute position

OFF_POS(1	9:12)	Addr. SER:0x20;	bit 7:0	Bank0, R
OFF_POS(2	27:20)	Addr. SER:0x21;	bit 7:0	Bank0, R
OFF_POS(3	35:28)	Addr. SER:0x22;	bit 7:0	Bank0, R
Code	Descr	ription		
0x000000000				
	Offset	(is automatically	computed)	
0xFFFFFFFF				

Table 113: Output position offset amended by the non-ius/MT

Preset function

The preset function corrects the output position value of the ABZ, SPI, or BiSS interface to the setpoint given by PRES_POS. Correction is initiated by writing command **SOFT_PRES** or **SOFT_E2P_PRES** to the command register (see page 57), or, if one of these commands is configured with PAO_CONF as NPRES command at PAO pin, by a falling edge at NPRES. See Table 32 for configuration of NPRES and Table 111 for PAO_CONF.

When the preset function is started, the ABZ converter is stopped. The current position is then determined. The correction factor for output (OFF_POS) is calculated taking PRES_POS into account and stored in the internal RAM. Offset values OFF_ABZ are computed and if the command **SOFT_E2P_PRES** is used written to the external EEPROM. The ABZ converter is then restarted.

PRES_POS(3	:0)	Addr. 0x2A; bit 7:4
PRES_POS(1	1:4)	Addr. 0x2B; bit 7:0
PRES_POS(1	9:12)	Addr. 0x2C; bit 7:0
PRES_POS(2	7:20)	Addr. 0x2D; bit 7:0
PRES_POS(3	5:28)	Addr. 0x2E; bit 7:0
PRES_POS(3	:0)	Addr. SER:0x4D; bit 7:4
PRES_POS(1	1:4)	Addr. SER:0x4E; bit 7:0
PRES_POS(1	9:12)	Addr. SER:0x4F; bit 7:0
PRES_POS(2	7:20)	Addr. SER:0x50; bit 7:0
PRES_POS(3	5:28)	Addr. SER:0x51; bit 7:0
Code	Descr	iption
0x000000000		
	Prese	t position
0xFFFFFFFF		

Table 114: Output position preset

Rev D1, Page 62/66

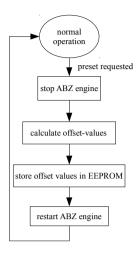


Figure 52: Preset sequence using command SOFT_E2P_PRES

Rev D1, Page 63/66

DESIGN REVIEW: Notes On Chip Functions

iC-MU Z		
No.	Function, Parameter/Code	Description and Application Notes
		Please refer to datasheet release A3.

Table 115: Notes on chip functions regarding iC-MU chip release Z.

iC-MU Y	1	
No.	Function, Parameter/Code	Description and Application Notes
1	CRC of output data iC-MU(2): IC operating mode BiSS or extended SSI (MODEA = 0x2, 0x7) and 3-track nonius with 4096 CPR (MPC = 12, OUT_LSB = 0x0)	Effects the construction of a multiturn system with two iC-MU (Page 43): 3-track nonius configuration with 2 iC-MU and 4096 periods, sensor data output using BiSS or extended SSI protocol (SSI with CRC) shows an invalid CRC. Data output according to the SSI or SPI protocol is not affected.
2	SSI interface (MODEA = 0x4 to 0x7)	MT sensor communication not possible (GET_MT = 0)
3	SSI interface Gray coded MODEA = 0x4; GSSI = 0x1; OUT_ZERO = 0x0	The level of the SSI output pin (signal SLO) can be "1" or "0" during timeout $t_{\rm tos}$ (see Figure 5). Therefore, a SSI timeout may not be detected by a SSI master in any case. To obtain a reliable SSI timeout set parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and send an additional clock pulse.
4	SSI interface Gray coded with error bit MODEA = 0x5 or 0x6; GSSI = 0x1; OUT_ZERO = 0x0	The SSI position data is not converted correctly into Gray code. By setting parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and sending an additional clock pulse and subsequently ignoring the additional ZERO bit, the singleturn data is converted correctly into Gray code.

Table 116: Notes on chip functions regarding iC-MU chip release Y1

iC-MU Y	C-MU Y2/Y2H			
No.	Function, Parameter/Code	Description and Application Notes		
1	3-track Nonius systems with two iC-MU MPC \geq 0x7	The period counter consistency error verification NON_CTR of the multiturn iC-MU (see Figure 41, iC-MU(2)) must be switched off \rightarrow NCHK_NON = 0x1.		
2	SPI interface (MODEA = 0x0, 0x1), Read/Write REGISTER(single) with access to EEPROM	SPI command sequence as in Figure 30. The end of a Read/Write REGISTER(single) command to an EEPROM address can be detected by checking the status bit BUSY. Register Status/Data and SPI-STATUS change from 0x02 (Busy) to 0x00. The status bits VALID/FAIL are without functionality. A successful I ² C communication between iC-MU and the EEPROM can be checked via STATUS1 flag EPR_ERR = 0.		
3	SSI interface Gray coded MODEA = 0x4; GSSI = 0x1; OUT_ZERO = 0x0	The level of the SSI output pin (signal SLO) can be "1" or "0" during timeout t_{tos} (see Figure 5). Therefore, a SSI timeout may not be detected by a SSI master in any case. To obtain a reliable SSI timeout set parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and send an additional clock pulse.		
4	SSI interface Gray coded with error bit MODEA = 0x5 or 0x6; GSSI = 0x1; OUT_ZERO = 0x0	The SSI position data is not converted correctly into Gray code. By setting parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and sending an additional clock pulse and subsequently ignoring the additional ZERO bit, the singleturn data is converted correctly into Gray code.		

Table 117: Notes on chip functions regarding iC-MU chip release Y2 and Y2H

Rev D1, Page 64/66

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2013-04-30		Initial Release	

Rel.	Rel. Date*	Chapter	Modification	Page
C1	2015-10-23		Release for internal use	

Rel.	Rel. Date*	Chapter	Modification	Page
C2	2015-11-02	PACKAGING INFORMATION	Drawing package dimension updated	6
		ELECTRICAL CHARACTERISTICS	Operating conditions: changed VPA, VPD = 5 V in VPA = VPD = 5 V Item 101: power supply voltage at VPA and VPA combined in item 101 Item 103: changed value min. 3 mA \rightarrow 8 mA, typ. 8 mA \rightarrow 13 mA, max. 12 mA \rightarrow 16 mA Item 104: changed value min. 25 mA \rightarrow 20 mA Item 108: introduced $\Delta V/\Delta t$ Power-Up Slew Rate at VPA and VPD Item 109: introduced Required Backup Capacitors at VPA, VPD Item 203: added note: for incremental part see table 78 Item 401: changed value typ. 1.25 V \rightarrow 1.24 V and max. 1.34 V \rightarrow 1.36V Item 404: changed value min. 3.7 V \rightarrow 3.65V and typ. 4.0 V \rightarrow 3.9 V Item 406: changed value min. 0.35 V \rightarrow 0.3 V Item 408: introduced max. time for internal cyclic checks Item 504: changed value +-65 mV to +-60 mV Item 505: typ. value corrected, typ. $6^{\circ} \rightarrow 7^{\circ}$ Item 506: values corrected, min/max 12° \rightarrow 11.25°, typ. 12.5° \rightarrow 13° Item 808 during start-up: changed value 60 kHz \rightarrow 70 kHz Item 905: changed value min. 750μA \rightarrow 800μA and max75μA \rightarrow -80μA	8 to 9
		REGISTER ASSIGNMENTS (EEPROM)	Renamed REVISION \rightarrow DEV_ID Renamed MANUFACTURER \rightarrow MFG_ID	16
		SIGNAL CONDITIONING FOR MASTER AND NONIUS CHANNELS: x = M,N	Introduced parameter ACGAIN_M, ACGAIN_N, AFGAIN_N, AFGAIN_N	21, 50
		I2C INTERFACE AND STARTUP BEHAVIOR	Table 26: exchanged addr. 0x22 <→ 0x21 Added table 30: default interface depending on PA0 Table 31 corrected	24, 25
		CONFIGURABLE I/O INTERFACE	Added note for port A: if MODEA is 0x4, MT sensor communication not possible (GET_MT = 0) Added note for port B: if MODEB is 0x00x3, pin NER (PB3) is open-collector output Added Figure 19 and description: parallel SPI bus configuration	27, 33
		CONVERTER AND NONIUS CALCULATION	Parameter FILT table 51: added interpolation factor Parameter LIN table 53: description enhanced	38, 39
		MT INTERFACE	Figure 41 updated GET_MT description enhanced, added grey note box MT Interface Daisy Chain description enhanced	43, 27, 44, 63
		INCREMENTAL OUTPUT ABZ, STEP/DIRECTION AND CW/CCW	Table 78 SS_AB enhanced Table 80 CHYS_AB enhanced	46 - 47
		REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)	Added addr. 0x80 to 0x82. CRC16 and CRC8 Parameter HARD_REV table 92: added code 0x7 → iC-MU Y2 Added Figure 48 register/memory mapping	52, 54
		COMMAND REGISTER	iC-MU commands table 102: added code 0x00 Table 103, 104, 105, 106 'Addr. SER' corrected Table 107 corrected	57, 58
		DESIGN REVIEW: Notes On Chip Functions	iC-MU Y1 - added item no 2: SSI interface (MODEA = 0x4 to 0x7) Added Notes on chip functions regarding iC-MU chip release Y2 (table 116)	63

Rev D1, Page 65/66

Rel.	Rel. Date*	Chapter	Modification	Page
С3	2016-12-21		Removed Preliminary Document titel changed from OFF-AXIS NONIUS ENCODER WITH INTEGRATED HALL SENSORS into MAGNETIC OFF-AXIS POSITION ENCODER - POLE WIDTH 1.28MM	
		PACKAGING INFORMATION	Updated package information and package dimensions	5, 6
		ANALOG SIGNAL CONDITIONING FLOW: x = M,N	Corrected clock frequency for test mode TEST = 0x26 from 380kHz to 405kHz	22
		I2C INTERFACE AND STARTUP BEHAVIOR	Added example of CRC calculation routine using CRC8 (Table 29)	24
		CONFIGURABLE I/O INTERFACE	Table 34: added hint for MODE_ST = 0x2 Figure 23, 24 and 25: renamed REQ into LATCH	28, 35
		MT INTERFACE	Chapter revised, Figure 37 and 40 updated	41 - 44
		COMMAND REGISTER	Renamed command E2P_COM into I2C_COM (CMD_MU = 0x0A) Renamed I2C_E2P_START into I2C_DEV_START (Table 106) Command ABS_RESET: description revisied Command MT_RESET: description revisied	57 - 58
		DESIGN REVIEW: Notes On Chip Functions	Added item 3 and 4 for iC-MU Y1 and Y2	63

Rel.	Rel. Date*	Chapter	Modification	Page
D1	2017-09-18	ELECTRICAL CHARACTERISTICS	Item 407: max. value changed from 30MHz to 32MHz	
		REGISTER ASSIGNMENTS (EEPROM)	Table 11 revised	19
		ANALOG SIGNAL CONDITIONING FLOW: x = M,N	Added note box with hyperlink to app note AN3	22
		CONFIGURABLE I/O INTERFACE	Formula to calculate data length corrected	28
		STATUS REGISTER AND ERROR MONITORING	Table 96: enhanced notes	55
		DESIGN REVIEW: Notes On Chip Functions	Table 117: added chip revision Y2H	63

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

^{*} Release Date format: YYYY-MM-DD

Rev D1, Page 66/66

ORDERING INFORMATION

Туре	Package	Order Designation
iC-MU	16-pin DFN 5 x 5 mm	iC-MU DFN16-5x5

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 -92 92 -0
Am Kuemmerling 18 Fax: +49 (0) 61 35 -92 92 -192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners