

LOGC -RALE

Introduzione al catalogo per la corretta scelta dei cavi speciali

Gentile professionista,

la realizzazione di questo catalogo ci vede impegnati da anni nell'approfondire temi più svariati.

Pensato con l'intento di fornire un valido supporto tecnico e normativo , sia alla progettazione che alla sistemistica , risulta essere un pratico ed utile strumento di lavoro che , se abbinato al nuovo sito internet ricco di contenuti , siamo sicuri diventerà un indispensabile mezzo di lavoro per il progettista.

Nato con l'intento di approfondire le tematiche installative più moderne in funzione del campo di applicazione e dell'aggiornamento tecnologico, ha l'ambizione di diventare il punto di riferimento nel mondo dei sistemi, offrendo soluzioni pratiche e durature in alternativa ai tradizionali mezzi di comunicazione oramai, in molte occasioni divenuti obsoleti e spesso onerosi.

Da sempre, prima di progettare un cavo, ci impegniamo nel comprendere a fondo la complessità del sistema in cui verrà inserito per comprenderne le potenzialità e per far si che il cavo stesso non ne diventi il "limite".

La collaborazione con i principali produttori di apparati di livello mondiale ci consente di entrare nel vivo della questione apportando modifiche ed offrendo soluzioni tangibili.

Un esempio pratico è dato dai cavi HD per videosorveglianza, con un cavo coassiale del diametro di soli 3,3 mm (50% in meno di un tradizionale RG 59) siamo in grado oggi di triplicare la distanza massima percorribile del segnale video analogico dando la possibilità all'operatore di aggiornare il firmware da remoto.

Oppure i cavi FRH RR resistenti al fuoco per impianti di rivelazione incendio in conformità della norma UNI 9795:2010, divenuti oggi il benchmark nel mondo della protezione attiva dove, oltre alle caratteristiche di resistenza al fuoco, assicurano il corretto funzionamento del protocollo presente sul bus di comunicazione tra centrale e periferiche.

L'impegno, la passione e la possibilità di presenziare ai tavoli normativi CEI ed UNI, ci contraddistinguono nella spasmodica ricerca del prodotto più idoneo all'applicazione senza generalizzare.

Articoli tecnici, testi per capitolato con riferimenti normativi attualizzati, corsi di applicazioni normativi su territorio nazionale, supporto alla fase di progettazione da parte di professionisti che hanno partecipato alla scrittura e al dibattito del testo normativo ci consente di creare un reale valore aggiunto per il professionista.

Tramite il sito internet www.betacavi.com è possibile scaricare la documentazione tecnica, gli articoli normativi, i file DWG, i testi per capitolato e iscriversi alla newsletters per rimanere sempre aggiornati in merito a variazioni normative o a innovazioni tecniche.

In conclusione, si evidenzia come il cavo, spesso catalogato alla voce accessori, sia in realtà il componente più oneroso da sostituire in caso di malfunzionamento quando in realtà è il componente decisivo per garantire le performance del sistema.

Luca Vittorio Cappelletti Sales MKT Manager Europe

e Gollke

	Introduzione al catalogo per la corretta scelta dei cavi speciali	1
	Indice	2
	Scelta dei cavi idonei a seconda delle condizioni di posa	4
	Temperature di esercizio	4
	Condizioni di posa	4
	Duraflam® Compound - BB Flex® Compound	5
	Riferimenti normativi	6
	Norme di prodotto più comuni	6
	Metodi di prova	6
No. of the	Betatherm cavi per impianti fotovoltaici	8
	Betatherm	9
M .	Bioedilizia	10
	Serie Bio	11
HA		
1	Cavi schermati resistenti al fuoco comando e segnalamento Uo/U =0,6/1kV, CEI EN 50200	12
	Serie FRH Schermato	13
UDA	Cavo a norma CEI En50200, CEI 20-105, UNI 9795:2010	14
17.0	Serie FRH RR	15
Marie	Serie FRH RR NS	15
	Cavi per impianti audio di public address ed EVAC	16
	EVAC cavi resistenti al fuoco per sistemi di evacuazione sonora per linee fino a 100V	17
A	Coul acceptable new immigration to	18
No.	Cavi coassiali per impianti TV	19
	75 Ohm cavi coassiali per sistemi TV SAT e digitale terrestre 75 Ohm cavi coassiali per progetto SKY	19
		19
	75 Ohm cavi coassiali per interramento Requisiti minimi di schermatura	
<i>•</i>	Cavi coassiali super schermati in classe A+ per impianti TV	20
		22
	Cavi coassiali 50 Ohm Cavi coassiali per sistemi wireless	23
		23

	Cavi per impianti di videosorveglianza	24
3 .80	Hd4 nuova generazione di cavi coassiali e ibridi per videosorveglianza	25
	Hd8 nuova generazione di cavi coassiali e ibridi per videosorveglianza	25
1 5 V	Hd14 nuova generazione di cavi coassiali e ibridi per videosorveglianza	25
	Betanet Cavi UTP5E e ibridi per videosorveglianza IP	25
	Cavi per impianti di videosorveglianza IP e EOC	26
	Betanet	27
900	EOC	27
	HD IP	27
. Commission	Nuovi connettori BNC maschi a compressione per sistemi TVCC analogici e HD-SDI	28
CA AN		
Z WY SASW		
	Cavi per sistemi di automazione	30
	MAC	31
Min		
	ARM - Cavi armati antiroditore	32
	Cavi armati antiroditore	33
	RG MIL C17	34
	MIL C17 Cavi coassiali 75 Ohm per connessioni	35
	MIL C17 Cavi coassiali 50 Ohm per connessioni	35
	RG Precision Video Cable - cavi coassiali 75 Ohm per connessioni	35
	Cavi per comando e segnalamento	36
	Flexshield	37
	- 10.00.000	
	Betanet	38
	Cavi trasmissione dati Betanet	39
-	5E UTP e 5E FTP	39
	6 UTP	39
	Cavi per sistemi di allarme antintrusione e antirapina	40
REC	Serie SIC E cavi per impianti antintrusione con guaina in PVC	41
	Serie SIC EL cavi per impianti antintrusione con guaina in LSZH	42
18	l lmballi	43
	Un'azienda Italiana in continua evoluzione	44
	Formazione	45
	Direttive WEEE e RoHS	46

Scelta dei cavi idonei a seconda delle condizioni di posa

(Norme di riferimento CEI EN 50117)

Temperature di esercizio								
Materiale	Minima	Massima						
PVC (Polivinilcloruro)	-30°C	+75°C						
PE (Polietilene)	-35°C	+80°C						
Duraflam® (LSZH)	-40°C	+85°C						
M.E.R.* (M21)	-40°C	+120°C						
Bbflex®	-40°C	+70°C						

Condizioni di posa

Guaina	Luoghi pubblici	Interno	Esterno	Ambienti bagnati	Ambienti umidi
PE					
PVC					
Duraflam® LSZH					
M.E.R Mescola elastomerica reticolata					
BBflex®					

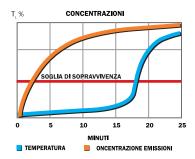
PVC= Composto ritardante la fiamma, in caso di combustione sprigiona gas tossici e nocivi. La sua struttura molecolare permette la permeabilità all'acqua, pertanto risulta non idoneo alla posa in esterno per lunghi periodi (consentito solo per applicazioni temporanee). La variazione delle condizioni climatiche e ambientali accelerano notevolmente il processo di deterioramento, shock termici possono causare alterazioni trasmissive e meccaniche alterando le caratteristiche costruttive del prodotto.

PE= In caso di combustione non sprigiona gas tossici e nocivi ma risulta propagante la fiamma. La sua struttura molecolare risulta impermeabile all'acqua e garantisce elevatissime prestazioni meccaniche (resistenza alla: trazione, abrasione, schiacciamento, UV, etc.) pertanto idoneo alla posa in esterno.

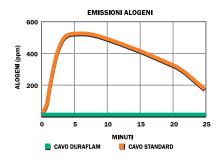
Duraflam® LSZH= In caso di combustione non sprigiona gas tossici e nocivi, materiale non propagante la fiamma. La sua struttura molecolare risulta impermeabile all'acqua e garantisce elevate prestazioni meccaniche pertanto idoneo alla posa in interno ed in esterno. La posa di cavi in LSZH è obbligatoria a norma di legge in ambienti pubblici (Ospedali, cinema, teatri, uffici postali,...) in conformità alla norma CEI 64/8.

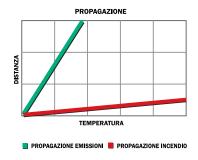
M.E.R.= Mescola elastomerica reticolata con prestazioni meccaniche molto simili alla gomma. Particolarmente flessibile, é indicata per impieghi gravosi in quanto ha elevate doti di resistenza all'abrasione, al taglio, allo schiacciamento, resistente ai raggi UV, non è propagante l'incendio e non ha emissioni di gas tossici e nocivi.

BBflex®= Mescola con prestazioni meccaniche eccellenti. La struttura molecolare è stata appositamente sviluppata tenendo in considerazione le condizioni più critiche in cui le automazioni si trovano ad operare.

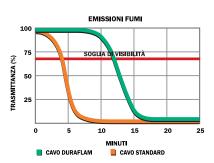

Particolarmente flessibile, è indicata per impieghi gravosi in quanto ha elevate doti di resistenza all'abrasione, alla trazione, allo schiacciamento, al taglio e ai raggi UV.

La composizione molecolare è inoltre stata sviluppata per resistere agli ambienti più critici, tale caratteristica rende pertanto idonea la posa in ambienti umidi o bagnati.


In caso di coesistenza tra cavi per sistemi di categoria I e cavi per sistemi di categoria 0, su questi ultimi dovrà essere riportata la stampigliatura C=4 (Uo=400V) rif.CEI UNEL36762 al fine di garantirne l'idoneità alla posa.


^{*} Mescola elastomerica reticolata

Duraflam® Compound



L'anidride carbonica (CO₂) fa aumentare la frequenza cardiovascolare provocando il panico. Il monossido di carbonio (CO), riduce la concentrazione di ossigeno mel sangue portando al decesso.

Il fumo riduce la visibilità alle persone coinvolte nell'incendio ostacolando l'individuazione delle vie di fuga e rendendo difficile l'intervento delle squadre di soccorso.

Gli alogeni riducono la percettività delle persone diminuendo la reattività muscolare; sono molto corrosivi e possono causare danni irreversibili all'apparato respiratorio. Dato l'elevato grado di corrosione, sono molto aggressivi verso apparati elettrici, elettronici, arredamenti, etc.

Il composto Duraflam® è il risultato di anni di studio e ricerca che sono stati condotti sulle cause che hanno portato agli incendi in ambienti chiusi e sulle reazioni comportamentali che le persone stesse assumevano in caso di incendio. Duraflam® è un materiale LSZH (bassa emissione di fumi e libero da alogeni) creato per applicazioni universali ovvero per essere installato in interni ed esterni oltre che per posa interrata in Tubazione.

Il composto Duraflam® è un materiale sviluppato da BETA CAVI per ottimizzare i costi di installazione garantendo standard di prevenzione e sicurezza elevatissimi. Molti dei cavi presentati possono essere forniti con guaina LSZH Duraflam®.

BBflex® Compound

Caratteristiche tecniche BBflex®

Caratteristica	Metodo di Prova	Valore Tipico	Tolleranza
Durezza a 15"	ISO 868	68 Shore ³ A	±2
Carico a rottura	ISO 527	11 mm²	-
Allungamento a rottura	ISO 527	270%	-
Cold Flex	ISO 485	-40°C	±2

Le condizioni di lavoro delle automazioni spesso risultano condizionate da vari fattori quali: agenti esterni, basse temperature, presenza di olio, vento, umidità, raggi UV, ecc. che possono compromettere l'integrtità della linea di interconnessione.

Al fine di garantire il corretto funzionamento del circuito nel tempo, al termine di un ciclo di sperimentazione, il materiale BB-Flex® è risultato il compaund più idoneo in quanto presenta tutti i requisiti necessari a mantenere le funzionalità del sistema in condizioni di criticità.

Infatti il composto BBFlex consente elevata resistenza alla trazione, allo schiacciamento, al taglio e all'abrasione mantenendo inalterate le caratteristiche di flessibilità e utilizzo.

Creato per applicazioni universali ovvero per essere installato in interni, in cavidotti ed in esterni.

Il composto BB-Flex® è un materiale sviluppato da BETA CAVI per ottimizzare i costi di installazione garantendo standard di sicurezza elevatissimi.

NORME	NON PROPAGAZIONE DELLA FIAMMA	NON PROPAGAZIONE DELL'INCENDIO	OPACITA' DEI FUMI	EMISSIONE DI GAS ALOGENIDRICI	INDICE DI TOSSICITA'	RESISTENZA AL FUOCO
(S) IEC	IEC 60332-1-2	- 60332-3-24	61034-2	60754-1	-	-
O EN	50265-2-1	- 50266-2-4	50268-2	50267-2-1	-	50200/50362
UNE	UNE-EN 60332-1-2 2005	5 - UNE-EN 50226-2-4	UNE-EN 50226-2-4	UNE-EN 50268-2	UNE-EN 50267-2-3	UNE-EN 50200
■ CEI	20-35/1-1	20-22 20-22/3-4	20-37/3-1	20-37/2-1	20-37/4-0	20-36/4-0

note cavo singolo fascio 10 kg/m fascio 1,5 l/m trasmittanza min 60% massimo 0,3% max % gas tossici 850°C 90 min. shock

Le normative differiscono in:

Norme di prodotto più comuni

Norma CEI	Descrizione
CEI 20-13	Cavi con isolamento estruso in gomma per tensioni nominali da 1kV a 30kV.
CEI 20-14	Cavi isolati con polivinilcloruro per tensioni nominali da 1kV a 3kV.
CEI 20-19	Cavi con isolamento reticolato con tensione nominale non superiore a 450/750V.
CEI 20-20	Cavi con isolamento termoplastico con tensione nominale non superiore a 450/750V.
CEI 20-28	Cavi senza alogeni isolati in gomma, non propaganti l'incendio, per tensioni nominali Uo/U non superiori a 0,6/1kV.
CEI 20-39	Cavi per energia ad isolamento minerale e loro terminazioni con tensione nominale non superiore a 750V.
CEI 20-45	Cavi isolati con mescola elastomerica, resistenti al fuoco, non propaganti l'incendio, senza alogeni (LS0H) con tensione nominale Uo/U di 0,6/1kV.
CEI 20-91	Cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1000V in corrente alternata e 1500V in corrente continua per applicazioni in impianti fotovoltaici.
CEI 20-105	Cavi elettrici resistenti al fuoco, non propaganti la fiamma, senza alogeni, con tensione nominale 100/100 V per applicazioni in sistemi fissi automatici di rilevazione e di segnalazione allarme d'incendio

Metodi di prova

Norma CEI	Descrizione
CEI 20-35	Prove sui cavi elettrici e ottici in condizioni di incendio
CEI 20-22/2	Prove di incendio su cavi elettrici, Parte 2: prova di non propagazione dell'incendio.
CEI 20-22/3	Metodi di prova comuni per cavi in condizioni di incendio - Prova di propagazione della fiamma verticale di fili o cavi montati verticalmente a fascio.
CEI 20-37	Metodi di prova comuni per cavi in condizioni di incendio - Prova sui gas emessi durante la combustione dei materiali prelevati dai cavi.
EN 50200 CEI 20-36/4	Metodo di prova per la resistenza al fuoco di piccoli cavi non protetti per l'uso in circuito di emergenza. Temperatura di prova 830°C + shock meccanico fino 120 min
EN 50280-1-16	Metodo di prova per la resistenza al fuoco di piccoli cavi trasmissione dati non protetti per l'uso in circuito di emergenza. Temperatura di prova 830°C + shock meccanico fino 120 min .

N	TENSIONE DI RIFERIMENTO		APPLICAZIONE PREVISTA	IMPIANTI	COLORE
Ü	Tensione nominale Uo/U	Tensione massima Um			
1	-	-	Cavi telefonici	-	
2	300/300 V 300/500 V 450/750 V 0,6/1 kV	- - - 1,2 kV	Cavi per segnalazioni e comandi	Categoria 0 e I	GRIGIO NERO VERDE
3	300/300 V 300/500 V 450/750 V 0,6/1 kV	300/300 V 300/500 V 450/750 V 0,6/1 kV	Cavi per energia a corrente alternata	Categoria I	BLU
4	3,6/6 kV 2,3/3 kV 3,6/6 kV 6/6 kV 6/10 kV 12/20 kV 18/30 kV	3,6/6 kV 2,3/3 kV 3,6/6 kV 6/6 kV 6/10 kV 12/20 kV 18/30 kV	Cavi per energia a corrente alternata	Categoria II	ROSSO
5	Qualsiasi	-	Cavi per energia a corrente continua	Per tensioni oltre 50 V fino a 30000 V	GIALLO

La tabella CEI UNEL 00721 "Colori delle guaine dei cavi elettrici" si occupa della codifica dei colori delle guaine esterne dei cavi con lo scopo di semplificare le operazioni di identificazione di cavi destinati ad applicazioni diverse o appartenenti ad impianti elettrici di differente categoria. I sistemi di impianti elettrici sono classificati secondo la loro tensione nominale dalla Norma CEI 11-1 in:

- sistemi di Categoria 0 (Zero) con tensione nominale minore o uguale a 50 V se a corrente alternata o a 120 V se in corrente continua;
- sistemi di Categoria I (Prima) con tensione nominale maggiore di 50 V e minore o uguale a 1.000 V in corrente alternata o da oltre 120 V fino a 1.500 V compreso se in corrente continua;
- sistemi di Categoria I I (Seconda) con tensione nominale maggiore di 1.000 V e minore o uguale a 30.000 V in corrente alternata o da oltre 1.500 V fino a 30.000 V compreso se in corrente continua;
- sistemi di Categoria III (Terza) con tensione nominale superiore a 30.000V

I colori possono rivestire solo superficialmente la guaina dei cavi oppure far parte dell'intera massa del rivestimento di protezione, ma in ogni caso devono sempre essere facilmente ed inequivocabilmente riconoscibili. Pertanto non devono modificarsi nel tempo per l'azione della luce, degli agenti atmosferici e delle sostanze abitualmente presenti nel luogo di posa. Di seguito si riporta la tabella riassuntiva proposta dalla Norma (la Norma si applica solo ai cavi rispondenti a norme nazionali) con i colori delle guaine esterne dei cavi in relazione al loro uso e alla categoria del sistema di impiego.

Tabella di conversione - American Wire Gauge a mm - mm²

AWG	Diametro	Sezione									
	mm	mm²									
00	9,266	67,43	11	2,305	4,172	23	0,573	0,258	35	0,142	0,016
0	8,251	53,48	12	2,053	3,309	24	0,510	0,204	36	0,127	0,012
1	7,348	42,41	13	1,828	2,624	25	0,454	0,162	37	0,113	0,010
2	6,544	33,63	14	1,628	2,081	26	0,404	0,128	38	0,100	0,008
3	5,627	26,67	15	1,450	1,650	27	0,360	0,102	39	0,089	0,006
4	5,189	21,15	16	1,291	1,309	28	0,321	0,081	40	0,079	0,005
5	4,621	16,77	17	1,150	1,038	29	0,285	0,064	41	0,071	0,004
6	4,115	13.30	18	1,024	0,823	30	0,254	0,050	42	0,063	0,003
7	3,685	10.55	19	0,911	0,652	31	0,226	0,040	43	0,054	0,0025
8	3,264	8,366	20	0,818	0,517	32	0,201	0,032	44	0,050	0,0020
9	2,906	6,634	21	0,722	0,410	33	0,179	0,025	45	0,044	0,0016
10	2,588	5,261	22	0,643	0,325	34	0,160	0,020	46	0,039	0,0012

BETATHERM FG21M21

(Norme di riferimento CEI 20-91)

	Colore guaina	Sezione mmq	Diametro guaina 1 (mm)	Diametro guaina 2 (mm)	Peso (kg/km)	Carico applicabile (N)	Portata 60°C (A)	Resistenza Ω/km
BT 1400 N	nero	4	3,9	5,5	78,3	60	55	5,0
BT 1400 R	rosso	4	3,9	5,5	78,3	60	55	5,0
BT 1400 B	blu	4	3,9	5,5	78,3	60	55	5,0
BT 1600 N	nero	6	4,5	6,3	108,0	90	70	3,3
BT 1600 R	rosso	6	4,5	6,3	108,0	90	70	3,3
BT 1600 B	blu	6	4,5	6,3	108,0	90	70	3,3

Temperatura di esercizio: -40°C + 120°C Max temperatura del conduttore: +120°C Temperatura di corto circuito: +250°C

Costante d'isolamento: >750 MOhm x km a 20°C Tensione nominale Uo/U: 0,6/1kVac 0,9/1,5 kVdc Tensione max concatenata: 1,2 kVac 1,8 kVdc

Tensione di prova: 4 kVac 9,6 kVdc

Raggio di curvatura: 6D

Colorazione guaina esterna: • • •

Serie BIO

	Formazione	Schermatura EN 50117:2004	Resistenza DC nominale	Diametro (mm)	Peso (kg/km)
BIO 2150	2x1,5 mmq	nastro+treccia Cu	13,2	7,4	75,2
BIO 3150	3x1,5 mmq	nastro+treccia Cu	13,2	7,8	94,5
BIO 2250	2x2,5 mmq	nastro+treccia Cu	7,9	8,7	107,5
BIO 3250	3x2,5 mmq	nastro+treccia Cu	7,9	9,1	134,8
BIO 2400	2x4 mmq	nastro+treccia Cu	4,9	10,2	153,3
BIO 3400	3x4 mmq	nastro+treccia Cu	4,9	10,9	200,9

Temperatura di esercizio: -30°C +70°C; Raggio minimo di curvatura (mm): 5D; Tensione nominale isolamento Uo/U: 450/750V;

Colorazione isolamenti interni 2 conduttori:

Colorazione isolamenti interni 3 conduttori: • • •

Colorazione guaina esterna:

Serie FRH - FTG100HM1 (schermati)

(Norme di riferimento: CEI 20-45, EN 50200 PH120, EN 50265-2-1)

ERW DAG - FIRE RESISTANT CASLS - PAGE III ITALY

	Formazione	Resistenza DC Ω/km	Capacità pF/m	Tensione nominale Uo/U	Diametro (mm)	Guaina	Peso (kg/km)
FRH2150	2 x 1,50 mmg	13,5	60	0,6/1kV	10,00	Duraflam LSZH	130
FRH2250	2 x 2,50 mmq	8,4	60	0,6/1kV	10,90	Duraflam LSZH	160
FRH3150	3 x 1,50 mmq	13,5	60	0,6/1kV	10,60	Duraflam LSZH	150
FRH3250	3 x 2,50 mmq	8,4	60	0,6/1kV	11,50	Duraflam LSZH	188

Temperatura di esercizio: -30°C +70°C; Raggio minimo di curvatura (mm): 5D; Passo di twistatura (mm): 20 D;

Colorazione isolamenti interni 2 conduttori: • • Colorazione isolamenti interni 3 conduttori: • • •

Colorazione guaina esterna: •

Serie FRH NS - FTG100M1 (non schermati)

(Norme di riferimento: CEI 20-45, EN 50200 PH120, EN 50265-2-1)

BETH DAIX - FIRE RESISTANT CABLE - MICE IN MALL

	Formazione	Resistenza DC Ω/km	Capacità pF/m	Tensione nominale Uo/U	Diametro (mm)	Guaina	Peso (kg/km)
FRHNS2150	2 x 1,50 mmq	13,5	60	0,6/1kV	9,80	Duraflam LSZH	118
FRHNS2250	2 x 2,50 mmq	8,4	60	0,6/1kV	10,70	Duraflam LSZH	147
FRHNS3150	3 x 1,50 mmq	13,5	60	0,6/1kV	10,30	Duraflam LSZH	138
FRHNS3250	3 x 2,50 mmq	8,4	60	0,6/1kV	11,30	Duraflam LSZH	175

Temperatura di esercizio: -30°C +70°C; Raggio minimo di curvatura (mm): 5D; Passo di twistatura (mm): 20 D;

Colorazione isolamenti interni 2 conduttori: • • Colorazione isolamenti interni 3 conduttori: • • •

Colorazione guaina esterna: •

Cavo a norma CEI EN 50200 CEI 20-105 per la UNI 9795

Sistemi fissi automatici di rivelazione, di segnalazione manuale e di allarme d'incendio.

La norma UNI 9795 prevede l'utilizzo di un cavo unico resistente al fuoco, conforme alla normativa CEI EN 50200, per il collegamento di tutti gli apparati (es. loop, targhe, sirene, porte tagliafuoco etc...) collegati nell'impianto antincendio.

Metodo di prova CEI EN 50200

Nel dettaglio , la metodologia di prova riportata nella norma EN 50200 ovvero "Metodo di prova per la resistenza al fuoco di piccoli cavi non protetti per l'uso in circuiti di emergenza" è applicata a cavi con diametro esterno non superiore a 20 millimetri e con tensione nominale non superiore a 0,6/1 kV (incluso cavi con tensioni nominali inferiori a 80 V e cavi ottici). La norma CEI EN 50200 è una delle 6 metodologie previste dalla norma CEI 20-36, ne consegue che, se non espressamente riportato sulla guaina e dichiarato dal produttore o da ente esterno preposto, un cavo a norma CEI 20-36 non è da considerarsi a norma CEI EN 50200 pertanto non è idoneo ad essere installato in conformità della UNI 9795 .

Un cavo conforme alla norma EN50200, garantisce la funzionalità del circuito durante la prova per un determinato periodo di tempo (requisito richiesto dalla UNI 9795 PH30) ma, essendo una norma di prova, non ne specifica le caratteristiche costruttive ovvero i parametri elettrici, trasmissivi e meccanici.

Caratteristiche costruttive e trasmissive.

Il loop antincendio è un collegamento di tipo BUS sul quale gira un protocollo digitale per la comunicazione tra apparati, pertanto, se la reale necessità dei costruttori di apparati per impianti di rivelazione incendio è quella di collegare l'impianto con cavi con prestazioni elettriche specifiche oltre a garantirne la resistenza al fuoco per un determinato periodo di tempo, è di competenza dei singoli costruttori indicare, oltre alla resistenza al fuoco, i requisiti necessari per il corretto funzionamento dell'impianto come: schermatura, capacità, induttanza, etc... onde evitare malfunzionamenti.

Serie FRH RR - SCHERMATO - FTE40HM1

(Norme di riferimento CEI 20-105 V1, CEI EN 50200 PH 30, CEI 20-37, CEI 20-22/III)

BETH CAVI EN SUZUO

	Formazione	Resistenza DC Ω/km	Capacità nF/km	Tensione nominale Uo/U	Diametro (mm)	Guaina	Peso (kg/km)
FRHRR 2050	2x0,50 mmq	37,7	56	100/100V	6,10	Duraflam LSZH	47,5
FRHRR 2075	2x0,75 mmq	24,6	61	100/100V	6,70	Duraflam LSZH	59,2
FRHRR 2100	2x1,00 mmq	18,9	63	100/100V	7,30	Duraflam LSZH	71,0
FRHRR 2150	2x1,50 mmq	13,2	67	100/100V	8,20	Duraflam LSZH	90,1
FRHRR 2250	2x2,50 mmq	7,9	79	100/100V	9,40	Duraflam LSZH	123,3
FRHRR 4050	4x0,50 mmq	37,7	56	100/100V	7,20	Duraflam LSZH	70,2
FRHRR 4075	4x0,75 mmq	24,6	61	100/100V	8,00	Duraflam LSZH	89,0
FRHRR 4100	4x1,00 mmq	18,9	63	100/100V	8,80	Duraflam LSZH	109,1
FRHRR 4150	4x1,50 mmq	13,2	67	100/100V	9,80	Duraflam LSZH	142,3
FRHRR 4250	4x2,50 mmq	7,9	79	100/100V	11,20	Duraflam LSZH	205,5

Serie FRH RR NS - NON SCHERMATO - FTE40M1

(Norme di riferimento CEI 20-105 V1, CEI EN 50200 PH 30, CEI 20-37, CEI 20-22/III)

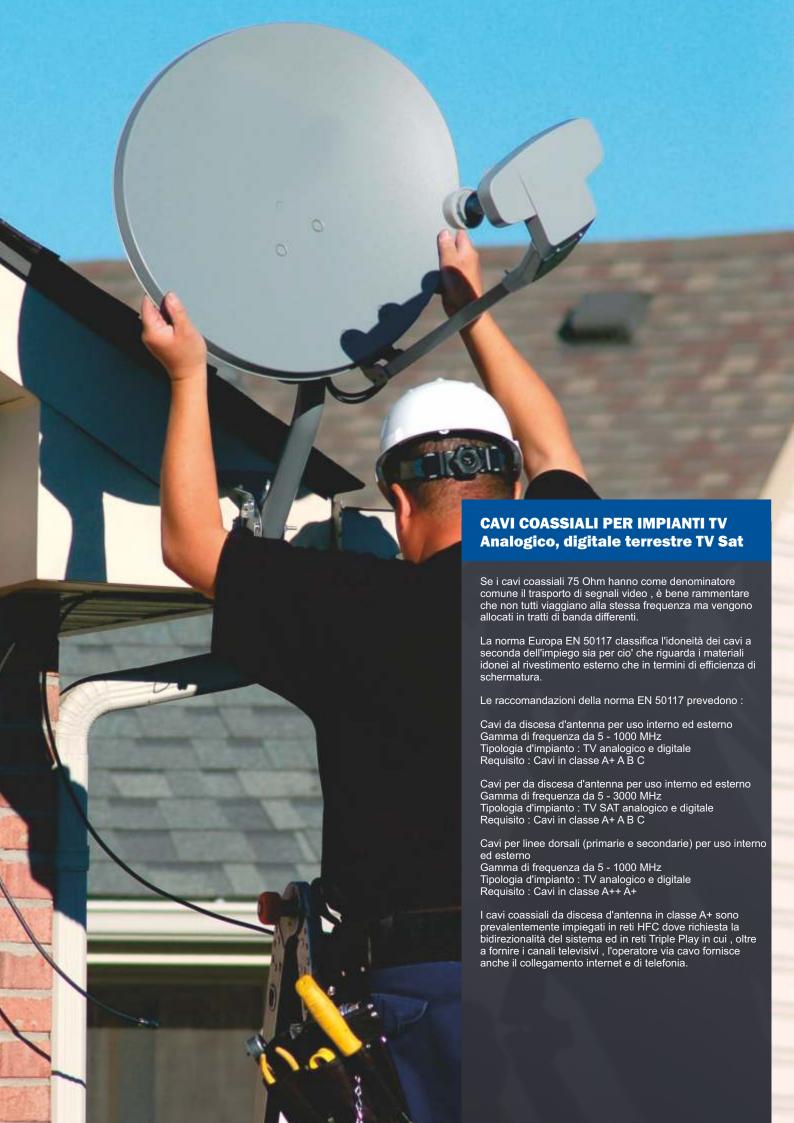
BETA CAVI EN 58208

	Formazione	Resistenza DC Ω/km	Capacità nF/km	Tensione nominale Uo/U	Diametro (mm)	Guaina	Peso (kg/km)
FRHRRNS 2050	2x0,50 mmq	37,7	35	100/100V	6,00	Duraflam LSZH	44,8
FRHRRNS 2075	2x0,75 mmq	24,6	39	100/100V	6,70	Duraflam LSZH	56,4
FRHRRNS 2100	2x1,00 mmq	18,9	41	100/100V	7,30	Duraflam LSZH	68,1
FRHRRNS 2150	2x1,50 mmq	13,2	43	100/100V	8,10	Duraflam LSZH	87,2
FRHRRNS 2250	2x2,50 mmq	7,9	51	100/100V	9,40	Duraflam LSZH	120,2
FRHRRNS 4050	4x0,50 mmq	37,7	35	100/100V	7,20	Duraflam LSZH	67,4
FRHRRNS 4075	4x0,75 mmq	24,6	39	100/100V	8,00	Duraflam LSZH	86,1
FRHRRNS 4100	4x1,00 mmq	18,9	41	100/100V	8,80	Duraflam LSZH	106,3
FRHRRNS 4150	4x1,50 mmq	13,2	43	100/100V	9,80	Duraflam LSZH	139,2
FRHRRNS 4250	4x2,50 mmq	7,9	51	100/100V	11,20	Duraflam LSZH	202,4

Temperatura di esercizio: -30°C +70°C; Raggio minimo di curvatura (mm): 5D; Passo di twistatura (mm): 20 D; Induttanza di loop: 660 mH/km

Colorazione isolamenti interni 2 conduttori: • • Colorazione isolamenti interni 4 conduttori: • • • •

Colorazione guaina esterna: •


EVAC - cavi resistenti al fuoco per sistemi di evacuazione vocale per linee fino a 100V (Norme di riferimento CEI 20-105 V1, CEI EN 50200, EN 50265-2-1, EN50268-2, EN 50267-2-1)

BETA CAM - ENAC AUDIO SYSTEMS -

	EVAC 2100	EVAC 2150	EVAC 2250	EVAC 2400	EVAC 2600
Formazione e sezione	2x1,00 mmq	2x1,50 mmq	2x2,50 mmq	2x4,00 mmq	2x6,00 mmq
Integrità circuito in condizioni di incend	lio PH 120	PH 120	PH 120	PH 120	PH 120
Barriera al fuoco	vetro-mica	vetro-mica	vetro-mica	vetro-mica	vetro-mica
Tensione nominale isolamento (Uo/U)	100/100 V				
Diametro esterno guaina (mm)	7,30	8,20	9,40	10,80	12,20
Raggio minimo di curvatura (mm)	37	41	47	54	61
Passo di twistatura (mm)	110	128	148	170	192
Resistenza conduttori (Ω/Km)	18,9	13,5	8,4	5,1	3,4
Impedenza caratteristica (Ω)	52	52	52	52	52
Isolamento guaina (KV)	2	2	2	2	2
Materiale isolamento guaina	Duraflam LSZH				
Colore guaina	Viola RAL 4005				

Temperatura di esercizio: -30°C +70°C; Raggio minimo di curvatura (mm): 5D; Passo di twistatura (mm): 20 D; Induttanza di loop: 660 mH/km Colorazione isolamenti interni: ● ● Colorazione guaina esterna: ●

75 Ohm - cavi coassiali per sistemi TV Sat e digitale terrestre (Norme di riferimento CEI EN 50117)

BETA CAVI - MADE IN ITAL

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Classe En50117	Attenuazio 862MHz	ne dB/100m 2150MHz	Condizio interno	ni di posa esterno
N 19 PVC	CCS 0,41	PEE 1,9	nastro+treccia 40%	3,6	В	45,3	73,0		
N 29H PVC	Cu 0,60	PEE 2,9	nastro+treccia 70%	4,3	Α	28,4	46,1		
N 35 PVC	Cu 0,80	PEE 3,5	nastro+treccia 40%	5,0	В	23,5	38,3		
NL 35 LSZH	Cu 0,80	PEE 3,5	nastro+treccia 70%	5,0	В	23,5	38,3		
N 35H PVC	Cu 0,80	PEE 3,5	nastro+treccia 40%	5,0	Α	23,3	38,0		
NL 35H LSZH	Cu 0,80	PEE 3,5	nastro+treccia 70%	5,0	Α	23,3	38,0		
N 44 PVC	Cu 1,00	PEE 4,4	nastro+treccia 40%	6,0	В	18,8	30,9		
N 46 PVC	Cu 1,00	PEE 4,6	nastro+treccia 40%	6,7	В	18,8	30,9		
N 48 PVC	Cu 1,13	PEE 4,8	nastro+treccia 40%	6,8	В	17,0	27,8		
NL 48 LSZH	Cu 1,13	PEE 4,8	nastro+treccia 40%	6,8	В	17,0	27,8		
N 48H PVC	Cu 1,13	PEE 4,8	nastro+treccia 70%	6,8	Α	16,9	27,6		
NL 48H LSZH	Cu 1,13	PEE 4,8	nastro+treccia 40%	6,8	Α	16,9	27,6		
N 71 H PE	Cu 2,20	PEE 10,2	nastro+treccia 66%	13,6	Α	9,1	15,6		

75 Ohm - cavi coassiali per progetto SKY

(Norme di riferimento CEI EN 50117)

BETA CAVI - MADE IN ITAL

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)			ne dB/100m 2150MHz	Condizio interno	ni di posa esterno
N 313 PVC	Cu 1,13	PEE 4,8	nastro+treccia 40%	6,8	В	17,0	27,8		
N 310 PVC	Cu 1,00	PEE 4,6	nastro+treccia 40%	6,7	В	18,8	30,9		
N 308 PVC	Cu 0,80	PEE 3,5	nastro+treccia 40%	5,0	В	23,5	38,3		

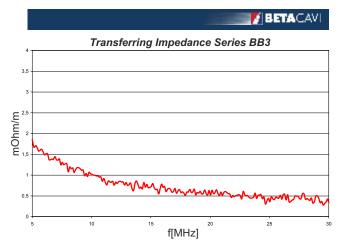
75 Ohm - cavi coassiali da interramento

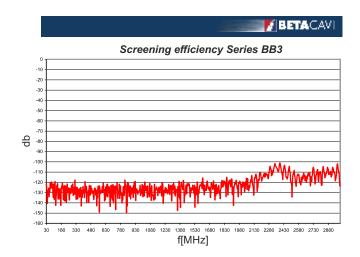
(Norme di riferimento CEI EN 50117)

BETH CHUI-TIADE IN TTAI

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Classe En50117	Attenuazior 862MHz	ne dB/100m 2150MHz	Condizioni di posa da Interramento
NAP 48 CUPE	Cu 1,13	PEE 4,8	nastro+treccia 40%	6,8	В	16,5	26,9	
N 71 CUPE	Cu 1,62	PEE 7,1	nastro+treccia 40%	10,0	В	11,9	19,9	
N 115 CUPE	Cu 2,70	PEE 11,5	nastro+treccia 40%	15,0	В	7,5	12,8	
COAX 3	Cu 3,45	PEE 14,9	nastro+treccia 65%	19,6	Α	6,1	10,5	

Requisiti minimi di efficienza di schermatura EN 50117									
Classe	5-30 MHz	30-1000 MHz	1 GHz-2GHz	2 GHz-3 GHz					
C	50 mOhm/m	75 dB	65 db	55 dB					
В	15 mOhm/m	75 dB	65 dB	55 dB					
A	5 mOhm/m	85 dB	75 dB	65 dB					
A+	2,5 mOhm/m	95 dB	85 dB	75 dB					
A++	0,9 mOhm/m	105 dB	95 dB	85 dB					


75 Ohm - Cavi coassiali Super schermati in classe A+ per impianti TV (DTH - DTT - LTE) (Norme di riferimento CEI EN 50117)


Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Attenuazio 862MHz	ne dB/100m 2150MHz	Guaina
N35BB3*	0,80	3,50	Al-CuSn-Al	5,40	23,2	37,6	PVC
RG6BB3*	1,00	4,60	Al-CuSn-Al	6,90	18,7	30,7	PVC
N71BB3*	1,63	7,10	Al-CuSn-Al	10,10	12,1	20,2	PE

Tutti i cavi della serie BB3 sono idonei alla posa in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762)

^{*} minimo quantitativo ordinabile 2000m.

Misure effettuate con metodo triassiale BEDEA COMET in conformità della norma EN 50117-2-4 2004

Misure effettuate con metodo triassiale BEDEA COMET in conformità della norma EN 50117-2-4 2004

Requisito minimo di efficienza di schermatura EN 50117 per cavi in classe A+								
Classe	5-30 MHz	30-1000 MHz	1 GHz-2GHz	2 GHz-3 GHz				
A+	2,5 mOhm/m	95 dB	85 dB	75 dB				

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Peso (Kg/Km)
BWL 195 PVC	Cu 1,00	PEE 2,80	nastro+treccia 85%	4,95	36,9
BWL 200 PVC	Cu 1,13	PEE 2,95	nastro+treccia 81%	6,10	37,5
BWL 240 PVC	Cu 1,40	PEE 3,80	nastro+treccia 80%	6,10	53,7
BWL 240 FLEX PVC	Cu 19x0,28	PEE 3,80	nastro+treccia 80%	6,10	53,7
BWL 300 PVC	Cu 1,70	PEE 4,80	nastro+treccia 83%	7,60	84,7
BWL 400 PVC	Cu 2,70	PEE 7,20	nastro+treccia 83%	10,30	149,2
BWL 400 CCA PVC	CCA 2,79	PEE 7,20	nastro+treccia 83%	10,30	115,0
BWL 400 CU PVC	Cu 2,70	PEE 7,20	nastro+treccia 50%	10,30	139,2
BWL 500 PVC	Cu 3,45	PEE 9,40	nastro+treccia 78%	12,70	217,1

Tabella comparativa attenuazione e potenza massima applicabile.

Freq.	BW	L 195	BW	L 200	BW	L 240	BWL	240 flex	BW	L 300	BW	L 400	BWL	400cca	BWI	_400Cu	BV	VL 500
MHz	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m	kW	dB/100m
30	0,88	5,8	0,92	5,2	1,41	4,2	1,41	4,9	2,04	3,5	3,36	2,3	3,36	2,1	3,36	2,1	4,73	1,9
50	0,68	7,4	0,71	6,7	1,09	5,4	1,09	6,3	1,57	4,5	2,59	3,0	2,59	2,7	2,59	2,7	3,64	2,4
150	0,39	12,6	0,41	11,4	0,62	9,2	0,62	10,9	0,89	7,6	1,47	4,9	1,47	4,7	1,47	4,7	2,06	3,9
220	0,32	15,3	0,34	13,8	0,51	11,1	0,51	13,3	0,73	9,2	1,20	6,0	1,20	5,8	1,20	5,8	1,68	4,7
450	0,22	22,2	0,23	20.0	0,35	16,1	0,35	19,2	0,50	13,4	0,82	8,7	0,82	8,4	0,82	8,4	1,14	7,0
900	0,16	31,9	0,16	28,5	0,24	23,2	0,24	27,6	0,35	19,4	0,57	12,7	0,57	12,2	0,57	12,3	0,78	10,2
1500	0,12	41,8	0,13	37,3	0,19	30,5	0,19	36,2	0,26	25,7	0,43	16,8	0,43	16,2	0,43	16,3	0,59	13,7
1800	0,11	46,0	0,12	41,1	0,17	33,7	0,17	40,0	0,24	28,4	0,39	18,6	0,39	17,9	0,39	18,1	0,53	15,2
2000	0,10	48,7	0,11	43,4	0,16	35,7	0,16	42,3	0,22	30,2	0,36	19,8	0,36	19,0	0,36	19,2	0,50	16,2
2500	0,09	55.0	0,10	48,9	0,14	40,3	0,14	47,8	0,20	34,2	0,32	22,5	0,32	21,5	0,32	21,8	0,44	18,5
3500	0,07	66,1	0,08	58,7	0,12	48,6	0,12	57,4	0,16	41,5	0,26	27,3	0,26	26,1	0,26	26,5	0,35	22,7
5800	0,05	87,5	0,06	77,3	0,09	64,5	0,09	76,1	0,12	55,8	0,20	36,9	0,20	35,1	0,20	35,9	0,26	31,1

MAX POWER ($T_a=40^{\circ}C$; $T_{cond}=100^{\circ}C$)

CAVI PER IMPIANTI DI VIDEOSORVEGLIANZA ANALOGICA E HD-SDI

La continua evoluzione dei sistemi di videosorveglianza analogici e digitali (HD-SDI), ha evidenziato ad oggi, che l'anello debole del sistema veniva rappresentato dal tipo di cavo coassiale impiegato.

Per ottimizzare l'impiego degli apparati e massimizzare le performance Beta Cavi in collaborazione con i principali produttori di apparati, ha sviluppato una nuova serie di cavi coassiali ad elevate prestazioni.

Come risultato ne è nata una nuovissima serie di coassiali denominata HD in grado di assicurare il corretto funzionamento delle telecamere fino a 800 m di distanza con segnale video analogico e 250 m con segnale HD-SDI.

Oltre alle performance trasmissive decisamente superiori alla media dei cavi consumer reperibili sul mercato, la serie HD è stata studiata per diventare un nuovo punto di riferimento nel mondo della videosorveglianza.

Idoneo alla posa sia in interno che in esterno e all'impiego in luoghi pubblici (cinema, teatri, ospedali, scuole...) grazie alla guaina realizzata in Duraflam.

HD 4 - nuova generazione di cavi coassiali e ibridi per videosorveglianza (Norme di riferimento CEI EN 50117)

BETA CAVI - HD H019 -

Codice	Formazione R	esistenza conduttori $(\Omega/{ m Km})$	Diametro esterno (mm)	Peso (Kg/Km)	Trasmissione s Analogico (m)	segnale video HD-SDI (m)
HD 4019	coax	-	3,30	15,2	400	70
HD 4205	coax+2x0,50	37,7	6,80	49,9	400	70
HD 4405	coax+2x0,50+2x0,22	2 37,7/95	6,80	53,9	400	70
HD 4207	coax+2x0,75	24,6	7,20	58,6	400	70
HD 4407	coax+2x0,75+2x0,22	24,6/95	7,20	63,3	400	70
HD 4210	coax+2x1,00	18,9	7,50	65,7	400	70
HD 4215	coax+2x1,50	13,5	8,00	78,6	400	70
HD 4225	coax+2x2,50	8,4	8,50	99,4	400	70

HD 8 - nuova generazione di cavi coassiali e ibridi per videosorveglianza (Norme di riferimento CEI EN 50117)

BETA CAVI - HD 8035 -

Codice	Formazione	Resistenza conduttori ($\Omega/{ m Km}$)	Diametro esterno (mm)	Peso (Kg/Km)	Trasmissione s Analogico (m)	segnale video HD-SDI (m)
HD 8035	coax	-	5,00	21,0	800	160
HD 8035 DG*	coax	-	6,30	36,0	800	160
HD 8205	coax+2x0,50	37,7	8,70	73,2	800	160
HD 8207	coax+2x0,75	24,6	9,10	83,3	800	160
HD 8210	coax+2x1,00	18,9	9,50	92,0	800	160
HD 8215	coax+2x1,50	13,5	10,10	106,0	800	160
HD 8225	coax+2x2,50	8,4	10,50	127,0	800	160

^{*}Doppia Guaina Duraflam® + PE per resistenza meccanica superiore.

HD 14 - nuova generazione di cavi coassiali e ibridi per videosorveglianza (Norme di riferimento CEI EN 50117)

BETA CAVI - HD 14055

Codice	Formazione	Resistenza conduttori (Ω/Km)	Diametro esterno (mm)	Peso (Kg/Km)	Trasmissione s Analogico (m)	segnale video HD-SDI (m)
HD 14055	coax	-	7,5	48	1200	250
HD 14055 D	G* coax	-	9,5	67	1200	250

Tutti i cavi della serie HD sono realizzati in materiale Duraflam® LSZH e sono idonei alla posa in interno ed in esterno nonchè in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762)

BetaNet - cavi UTP 5e ibridi per videosorveglianza IP

Tutti i cavi della serie BNUTP sono idonei alla posa in coesistenza con cavi per sistemi di Cat. I (CEI UNEL 36762) I Modelli BNUTP5E05, BNUTP5E07, BNUTP5E DG sono idonei alla posa in esterno.

EoC - nuova generazione di cavi ethernet per videosorveglianza IP (Norme di riferimento CEI EN 50117)

BETA CAM - BOC 8035

Codice	Formazione	Resistenza conduttori (Ω/Km)	Diametro esterno (mm)	Peso (Kg/Km)	Trasmission Con PoE*	ie segnale IP Senza PoE
EOC 4019	coax	-	3,3	15,2	165	700
EOC 8035	coax	-	5,0	21,0	500	750
EOC 14055	coax	-	7,5	48	850	850
EOC 14055 DG**	coax	-	9,5	67	850	850

^{*} Test effettuati con telecamere Samsung modello SNB5000

Tutti i cavi della serie EoC sono realizzati in materiale Duraflam® LSZH e sono idonei alla posa in interno ed in esterno nonchè in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762)

^{**}Doppia Guaina Duraflam® + PE per resistenza meccanica superiore.

Nuova generazione di connettori maschi BNC a compressione per cavi HD e EOC

Codice	Descrizione	Impedenza	Resistenza alla trazione	Grado di protezione IP	Rivestimento corpo
505033	Connettore a compressione per HD 4019/EOC 4019	75Ω	50N	X8	Nitin-6
505034	Connettore a compressione per HD 8035/EOC 8035	75Ω	50N	X8	Nitin-6
505035	Connettore a compressione per HD 14055/EOC 14055	75Ω	50N	X8	Nitin-6

Disponibili in confezioni da 50 pezzi

Accessori

Codice	Descrizione	Compatibilità
505502	Spelacavo	HD 4019/EOC 4019 - HD 8035/EOC 8035
505501	Spelacavo	HD 8035/EOC 8035 - HD 14055/EOC 14055
505108	Pinza a compressione	HD 4019/EOC 4019 - HD 8035/EOC 8035 - HD 14055/EOC 14055

L'idea generalista che le interconnessioni rappresentano un accessorio dell'impianto, hanno comportato negli ultimi anni non pochi incidenti o malfunzionamenti dei sistemi.

Nello sviluppo di queste linee di connessione ci si è posto l'obiettivo garantire alcuni requisiti tecnici e meccanici in modo da assicurare la funzionalità del sistema in qualsiasi condizione ambientale venga installato.

L'impiego di polimeri di nuova generazione ha garantito che l'isolamento dei conduttori risulti sufficientemente robusto per prevenire situazioni di schiacciamento, abrasione, stiramento, mantenendone ridotti i volumi. Tale caratteristica offre all'installatore il vantaggio di un cavo tecnicamente evoluto e maggiormente fruibile durante la fase di posa sia in condizioni di posa fissa che di posa mobile.

Grazie alla guaina esterna realizzata in un nuovo polimero di ultima generazione (BB-Flex®) è stato possibile non solo garantire un'ottima resistenza meccanica, (cosa che la normale guaina in PVC non assicura), ma anche garantire il mantenimento delle sue caratteristiche tecniche a seguito di sbalzi termici elevati, agenti esterni di interferenza (quali: pioggia, neve, grandine, vento e oli).

MAC - cavi per sistemi di automazioni a 24V vdc

(Norme di riferimento CEI UNEL 36762)

BETA CAUI - MAC 2050 -

Codice	Formazione	Resistenza conduttori (Ω /Km)	Tensione nominale Uo/U	Diametro esterno (mm)	Peso (Kg/Km)
MAC 2050	2x0,50	37,7	100/100V	5,40	40
MAC 4050	4x0,50	37,7	100/100V	6,20	57
MAC 6050	6x0,50	37,7	100/100V	7,40	82
MAC 2100	2x1,00	18,9	100/100V	6,80	65
MAC 4100	4x1,00	18,9	100/100V	7,90	96
MAC 6100	6x1,00	18,9	100/100V	9,40	139
MAC 2150	2x1,50	13,2	100/100V	7,80	86
MAC 4150	4x1,50	13,2	100/100V	9,00	126
MAC 6150	6x1,50	13,2	100/100V	10,60	181
MAC 2250	2x2,50	8,4	100/100V	9,40	128

MAC G - cavi per sistemi di automazioni a 230V vac

BETRICAUI - MAC 2 -

Codice	Formazione	Resistenza conduttori ($\Omega/{ m Km}$)	Tensione nominale Uo/U	Diametro esterno (mm)	Peso (Kg/Km)
MACG 3G150	3x1,50	13,5	300/500V	8,20	103
MACG 4G150	4x1,50	13,5	300/500V	9,00	126

Tutti i cavi della serie MAC sono realizzati con isolamento esterno in BB-Flex® che conferisce un'ottima resistenza meccanica pertanto risultano idonei in ambienti umidi o bagnati, sono adatti per posa mobile o fissa.

La composizione chimica della guaina assicura inoltre una protezione Anti UV (Rif: EN 50363-4-1 Tipo Tm2) aumentandone la resistenza agli agenti di interferenza esterna.

Temperatura di esercizio: Posa Fissa: -40°C +70°C;

Posa Mobile: -10°C +60°C;

del cavo

Temperatura di corto circuito: 160°C Raggio minimo di curvatura (mm): 5D;

Colorazione guaina esterna:

Imballi

SF (Termoretratto)

Codice	Descrizione	Dimensione mm	
SF 100	Termoretratto da 100 metri	in funzione del diametro esterno	

CAVI ARMATI ANTIRODITORE

Progettati con l'obbiettivo di garantire il mantenimento e le performance dei cavi in contesti ambientali ostili (presenza di roditori) o in condizioni di posa in cui è richiesta una particolare resistenza meccanica, è stata sviluppata una nuova famiglia di cavi armati denominata ARM Pensati per assicurare il mantenimento dei requisiti tecnici e meccanici di sicurezza del sistema ove agenti chimici o ambientali possono interferire o modificare l'integrità della linea di interconnessione, i cavi della serie ARM

Questi cavi, oltre a prevenire il decadimento delle caratteristiche trasmissive del cavo in seguito ad attacchi di roditori, sono dotati di un isolamento in Duraflam® LSZH allo scopo di preservare la linea di interconnessione da:

- Presenza di umidità
- Usura dei materiali dovuto a sbalzi termici

rappresentano la miglior soluzione.

- Abrasione
- Schiacciamento
- Degradazione degli isolamenti

consentenedone cosi' l'installazione in contesti sia privati che pubblici (es: ospedali, metropolitane, depositi,...).

L'elevata accuratezza nella progettazione di queste linee ha permesso lo sviluppo di una nuova gamma di cavi già conformi alla norma CEI UNEL 36762 permettendone l'installazione in coesistenza con cavi per sistemi di Cat.1 (es: linee per sistemi alimentati a 230V, 400V) senza l'impiego di setti separatori.

Lo sviluppo di questa nuova famiglia, garantisce la soluzione ideale per l'installatore assicurando il mantenimento delle caratteristiche meccaniche e prestazionali nel tempo indipendentemente dalle condizioni ambientali e di posa in cui ci si trova ad operare.

ARM - cavi armati antiroditore

Tutti i cavi della serie ARM sono realizzati in materiale Duraflam® LSZH e sono idonei alla posa in interno, in esterno ed in cavidotti interrati protetti, nonché in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762). **Ulteriori tipologie di cavi armati possono essere richieste per lotti minimi.**

MIL C17 - Cavi coassiali 75 Ω per connessioni

(Norme di riferimento MIL C 17)

BETA CAUT-NACE IN ITA

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Peso (Kg/Km)
RG 59 MIL C 17 B/U PVC	CCS 0,58	PE 3,7	Cu 91%	6,15	54,2
RG 11 MIL C 17 A/U PVC	Tcu 7x0,40	PE 7,25	Cu 97%	10,3	145,0

MIL C17 - Cavi coassiali $\mathbf{50}\Omega$ per connessioni

(Norme di riferimento MIL C 17)

BETA CRUIT HACE IN THE

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Peso (Kg/Km)
RG 58 C/U MIL C 17 PVC	TCu 19x0,18	PE 2,95	TCu 94%	4,95	38,0
RG 213 U MIL C 17 PVC	Cu 7x0,75	PE 7,25	Cu 97%	10,3	163,2

RG Precision Video Cable - Cavi coassiali 75 Ω per connessioni

(Norme di riferimento CEI 50117)

BETA CAVI

Codice	Conduttore Interno (mm)	Dielettrico (mm)	Conduttore esterno	Diametro esterno (mm)	Peso (Kg/Km)
RG 59 Precision Video Cable PVC	CCS 0,58	PE 3,7	B-lloy 91%	6,15	44,4
RG 59 Precision Video Cable LSZH	CCS 0,58	PE 3,7	B-lloy 91%	6,15	44,4
RG 59 Precision Video Cable DG*	CCS 0,58	PE 3,7	B-lloy 91%	6,70	66,0

FLEXSHIELD - Comando e Segnalamento CPT 007 FROR Uo/U = 300/500

BETA CAUL-INDE IN ITALY - FXS

Temperatura di esercizio:-30°C +70°C; Raggio minimo di curvatura (mm):5D;

Colorazione isolamenti interni:

con numerazione

Codice	Formazione	Sezione dei conduttori	Resistenza max conduttori 20°C (Ω /100m)	Diametro esterno (mm)	Peso (Kg/Km)
BNUTP5E	UTP 5e	24 AWG (0,511 mm)	9,5	5,25	32
BNUTP5E DG	UTP 5e (doppia guaina)	24 AWG (0,511 mm)	9,5	6,55	43
BNFTP5E	FTP 5e	24 AWG (0,511 mm)	9,5	6,40	42
BNUTP6E	UTP 6e	23 AWG (0,573 mm)	7,5	6,20	41
BNUTP6E DG	UTP 6e	23 AWG (0,573 mm)	7,5	7,60	54

Tutti i cavi della serie BNUTP sono idonei alla posa in coesistenza con cavi per sistemi di Cat. I (CEI UNEL 36762) e vengono realizzati in materiale LSZH.

Il Modello BNUTP5E DG è idoneo alla posa in esterno.

Temperatura di lavoro:-20°C +75°C;

Materiale conduttori: Rame rosso elettrolitico Raggio minimo di curvatura (mm): 8 D; Capacità della coppia (pF/100m): 330

Impedenza caratteristica (1to100 Mhz): 100 ± 15

5E UTP e 5E FTP

Frequenza MHz	RL dB min.	Attenuazione dB/100m max	NEXT dB	SRL dB min.	ELFEXT dB	PSELFEXT dB	Impedenza Ohm
1,000	20,00	2,00	65,30	28,00	64,00	61,00	100±15
4,000	23,00	4,10	56,30	28,00	52,00	49,00	100±15
8,000	24,50	5,80	51,80	28,00	45,90	42,90	100±15
10,00	25,00	6,50	50,30	28,00	44,00	41,00	100±15
16,00	25,00	8,20	47,30	28,00	39,90	36,90	100±15
20,00	25,00	9,30	45,80	25,00	38,00	35,00	100±15
25,00	24,30	10,40	44,30	27,00	36,00	33,00	100±15
31,25	23,60	11,70	42,90	26,10	34,10	31,10	100±15
62,50	21,50	17,00	38,40	23,10	28,10	25,10	100±15
100,00	20,10	22,00	35,30	21,00	24,00	21,00	100±15

6 UTP

Frequenza MHz	RL dB min.	Attenuazione dB/100m max	NEXT dB	SRL dB min.	ELFEXT dB	PSELFEXT dB	Impedenza Ohm
1,000	20,00	2,00	74,30	30,00	68,00	65,00	100±15
4,000	23,00	3,80	65,30	30,00	56,00	53,00	100±15
10,000	25,00	6,00	59,30	30,00	48,00	45,00	100±15
16,00	25,00	7,50	56,20	30,00	43,90	40,90	100±15
20,00	25,00	8,40	54,80	30,00	42,00	39,00	100±15
31,25	23,60	10,60	51,90	28,10	38,10	35,10	100±15
62,50	21,50	15,40	47,40	25,10	32,10	29,10	100±15
100,00	20,10	19,80	44,30	23,00	28,00	25,00	100±15
200,00	18,00	29,00	39,80	20,00	22,00	19,00	100±15
250,00	17,30	32,80	38,30	19,00	20,00	17,00	100±15

Serie SIC E - cavi per impianti antintrusione (Norme di riferimento CEI UNEL 36762)

Codice	Formazione	Numero conduttori	Resistenza ($\Omega/{ m Km}$)	Diametro (mm)	Peso (Kg/Km)	Guaina
SIC E 2	2x0,22+T+S	2	95	3,50	15,7	PVC bianco
SIC E 4	4x0,22+T+S	4	95	3,95	22,9	PVC bianco
SIC E 6	6x0,22+T+S	6	95	4,40	29,4	PVC bianco
SIC E 8	8x0,22+T+S	8	95	5,00	36,7	PVC bianco
SIC E 10	10x0,22+T+S	10	95	5,30	43,2	PVC bianco
SIC E 12	12x0,22+T+S	12	95	5,75	49,6	PVC bianco
SIC E 14	14x0,22+T+S	14	95	6,15	56,6	PVC bianco
SIC E 20	20x0,22+T+S	20	95	6,90	75,6	PVC bianco
SIC E 22	2x0,50+2x0,22+T+S	4	95/43,5	4,45	29,0	PVC bianco
SIC E 24	2x0,50+4x0,22+T+S	6	95/43,5	5,00	36,3	PVC bianco
SIC E 26	2x0,50+6x0,22+T+S	8	95/43,5	5,30	43,0	PVC bianco
SIC E 28	2x0,50+8x0,22+T+S	10	95/43,5	6,10	51,7	PVC bianco
SIC E 210	2x0,50+10x0,22+T+S	12	95/43,5	6,20	57,7	PVC bianco
SIC E 212	2x0,50+12x0,22+T+S	14	95/43,5	6,45	64,0	PVC bianco
SIC E 214	2x0,50+14x0,22+T+S	16	95/43,5	6,75	70,5	PVC bianco
SIC E 220	2x0,50+20x0,22+T+S	22	95/43,5	7,40	90,0	PVC bianco
SIC E 32	2x0,75+2x0,22+T+S	4	95/29	4,80	35,4	PVC bianco
SIC E 34	2x0,75+4x0,22+T+S	6	95/29	5,30	42,2	PVC bianco
SIC E 36	2x0,75+6x0,22+T+S	8	95/29	5,50	48,1	PVC bianco
SIC E 38	2x0,75+8x0,22+T+S	10	95/29	6,30	57,3	PVC bianco
SIC E 310	2x0,75+10x0,22+T+S	12	95/29	6,40	62,8	PVC bianco

Tutti i cavi della serie SIC sono idonei alla posa in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762)

Serie SIC EL- cavi per impianti antintrusione con guaina in LSZH

(Norme di riferimento CEI UNEL 36762)

Codice	Formazione	Numero conduttori	Resistenza ($\Omega/{ m Km}$)	Diametro (mm)	Peso (Kg/Km)	Guaina
SIC EL 2	2x0,22+T+S	2	95	3,50	15,7	Duraflam® LSZH
SIC EL 4	4x0,22+T+S	4	95	3,95	22,9	Duraflam® LSZH
SIC EL 6	6x0,22+T+S	6	95	4,40	29,4	Duraflam® LSZH
SIC EL 8	8x0,22+T+S	8	95	5,00	36,7	Duraflam® LSZH
SIC EL 10	10x0,22+T+S	10	95	5,30	43,2	Duraflam® LSZH
SIC EL 12	12x0,22+T+S	12	95	5,75	49,6	Duraflam® LSZH
SIC EL 14	14x0,22+T+S	14	95	6,15	56,6	Duraflam® LSZH
SIC EL 20	20x0,22+T+S	20	95	6,90	75,6	Duraflam® LSZH
SIC EL 22	2x0,50+2x0,22+T+S	4	95/43,5	4,45	29,0	Duraflam® LSZH
SIC EL 24	2x0,50+4x0,22+T+S	6	95/43,5	5,00	36,3	Duraflam® LSZH
SIC EL 26	2x0,50+6x0,22+T+S	8	95/43,5	5,30	43,0	Duraflam® LSZH
SIC EL 28	2x0,50+8x0,22+T+S	10	95/43,5	6,10	51,7	Duraflam® LSZH
SIC EL 210	2x0,50+10x0,22+T+S	12	95/43,5	6,20	57,7	Duraflam® LSZH
SIC EL 212	2x0,50+12x0,22+T+S	14	95/43,5	6,45	64,0	Duraflam® LSZH
SIC EL 214	2x0,50+14x0,22+T+S	16	95/43,5	6,75	70,5	Duraflam® LSZH
SIC EL 220	2x0,50+20x0,22+T+S	22	95/43,5	7,40	90,0	Duraflam® LSZH
SIC EL 32	2x0,75+2x0,22+T+S	4	95/29	4,80	35,4	Duraflam® LSZH
SIC EL 34	2x0,75+4x0,22+T+S	6	95/29	5,30	42,2	Duraflam® LSZH
SIC EL 36	2x0,75+6x0,22+T+S	8	95/29	5,50	48,1	Duraflam® LSZH
SIC EL 38	2x0,75+8x0,22+T+S	10	95/29	6,30	57,3	Duraflam® LSZH
SIC EL 310	2x0,75+10x0,22+T+S	12	95/29	6,40	62,8	Duraflam® LSZH

Tutti i cavi della serie SIC EL sono realizzati in materiale Duraflam® LSZH e sono idonei alla posa in interno ed in esterno nonché in coesistenza con cavi di energia per sistemi di categoria I (CEI UNEL 36762)

SC (Box singolo di cartone)

Codice	Descrizione	Dimensione mm
SC 100	Box di cartone singolo da 100 m	280 x 140 x 290
SC 250	Box di cartone singolo da 250 m	340 x 190 x 340

SF (Termoretratto)

Codice	Descrizione	Dimensione mm
SF 100	Termoretratto da 100 m	In funzione del diametro esterno del cavo
SF 200	Termoretratto da 250 m	In funzione del diametro esterno del cavo

WR (Bobina di legno)

Codice	Descrizione	Dimensione mm
WR 500	Bobina di legno da 500 m	In funzione del diametro esterno del cavo
WR 1000	Bobina di legno da 1000 m	In funzione del diametro esterno del cavo

Pallet completo

Pallet completo

Descrizione	Dimensione mm
Pallet completo di SC 100 60 unità	800 x 1200 x1100
Pallet completo di SC 250 24 unità	800 x 1200 x1100

Un'azienda italiana in continua evoluzione

BETA CAVI opera da oltre 30 anni nel settore della produzione di cavi in rame ad alto contenuto tecnologico per TLC ed è attualmente una delle più qualificate aziende del proprio settore in ambito Europeo.

La partnership con aziende di primissimo livello tra le quali ADI Honeywell, BOSCH Security Systems, SAMSUNG Techwin, SIEMENS etc... consentite all' azienda di realizzare prodotti ad hoc per le più svariate applicazioni accrescendo così il proprio know how.

Punto di forza dell'azienda è lo studio del sistema nel quale il componente dovrà essere inserito affinchè il cavo stesso non ne rappresenti il limite ma permetta di massimizzarne tutte le potenzialità garantendo il corretto funzionamento nel tempo.

L'azienda vanta un laboratorio di ricerca e sviluppo altamente sofisticato e all'avanguardia oggetto di prove anche da parte di referenti esterni.

BETA CAVI, pertanto, risulta oggi essere una delle aziende Europee del settore maggiormente in espansione e per questo che molti professionisti del settore l'hanno scelta come principale partner tecnologico.

Formazione

Beta cavi, consapevoli dell' importanza della formazione tecnica dei professionisti in materia di sicurezza e di normative ad essa correlate, è attiva a livello Nazionale con seminari tecnico normativi sulle attuali evoluzioni legislative.

Al fine di mantenere un livello alto la formazione è affidata a Docenti appartenenti ai vari gruppi di lavoro istituzionali (Membri CEI o Membri UNI).

Gli incontri sono a titolo gratuito e spesso, realizzati in collaborazione con i patrocini dei vari ordini dei professionisti, danno diritto a crediti formativi.

il calendario degli incontri formativi è consultabile sul sito www.betacavi.com alla voce eventi dove è possibile effettuare l'iscrizione..

Per la qualità dell'evento, durante gli incontri normativi i temi dell'incontro verranno trattati in modo tecnico normativo senza alcun riferimento commerciale, la loro finalità è quella di aggiornare i professionisti e gli operatori del settore in merito alla corretta applicazione della normativa.

Anche nel suo territorio Beta Cavi è attiva nel supportare i professionisti del settore in termini di informazione e assistenza al progetto.

Per ogni informazione normativa o tecnica commerciale non esiti a contattarci o visiti il sito WWW.Betacavi.com nell'area seminari /eventi.

Verifica sul sito www.betacavi.com l'agenda dei seminari tecnici e prenota la tua partecipazione ai corsi gratuiti per essere sempre tecnologicamente e normativamente aggiornato.

La direttiva 2002/96/CE, anche nota come WEEE, è volta a prevenire e limitare il flusso di rifiuti di apparecchiature destinati alle discariche, attraverso politiche di riuso e riciclaggio degli apparecchi e dei loro componenti. La direttiva applica il concetto della Responsabilità estesa del produttore (chi inquina paga). Difatti i produttori avranno l'obbligo di provvedere al finanziamento delle operazioni di raccolta, stoccaggio, trasporto, recupero, riciclaggio e corretto smaltimento delle proprie apparecchiature una volta giunte a fine vita. Tale responsabilità finanziaria sarà di tipo individuale per i prodotti immessi sul mercato dopo l'entrata in vigore della direttiva (13 Agosto 2005) e collettiva per i prodotti immessi prima di tale data.

La direttiva 2002/95/CE anche nota come RoHS, prevede il divieto e la limitazione di utilizzo di piombo, mercurio, cadmio, cromo esavalente ed alcuni ritardanti di fiamma nelle apparecchiature elettriche ed elettroniche.

Disposizioni RoHS

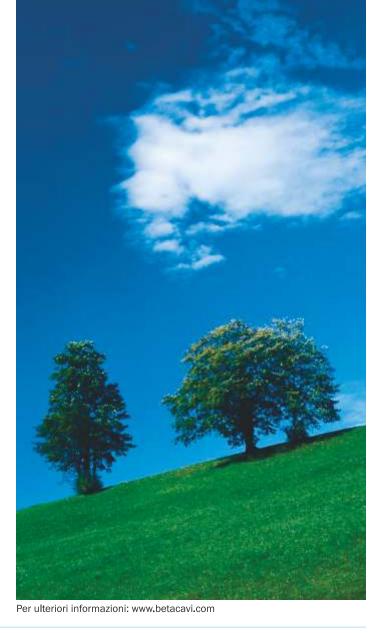
La Direttiva, la cui base legale è l'articolo 95 del trattato costituente dell'UE, mira a limitare o proibire l'uso di determinate sostanze pericolose nelle apparecchiature elettriche ed elettroniche, a questo proposito, da più di 5 anni BETA CAVI è attiva nella ricerca, sviluppo e produzione di cavi con mescole libere da piombo.

Nel 2003 BETA CAVI ha presentato il suo protocollo Generale per l'Ambiente (GSA) nel quale è stato altresì ristretto il numero di fornitori non ancora in regola con le direttive RoHs.

BETA CAVI è particolarmente sensibile alle problematiche dell'ambiente poiché è convinta che "senza un presente non ci può essere un futuro" infatti, oggi, con largo anticipo rispetto alla tempistica proposta dalla comunità europea, possiamo affermare che i nostri prodotti sono in linea con la direttiva RoHs e le regolamentazioni WEEE e pertanto non contengono:

- Piombo
- Mercurio
- Cadmio
- Cromo esavalente
- Bifenbili polibromurati (PBB)
- Bifenileteri polibromurati (PBDE)

Fonte:



Beta Cavi S.r.I.

Coaxial and Special Cables Manufacturing Quality Manager Ing. Roberto Silla

via delle industrie 84091 battipaglia sa italy

tel +39 0828 308765/345912 fax +39 0828 342283

P. IVA 00321770653