4-Q-DC Servoamplifier ADS in module housing

Order numbers

201583 ADS 50/5 145391

ADS 50/10

4-Q-DC Servoamplifier 137303 Choke mod

232359 235811

in module housing

in module housing

4-Q-DC Servoamplifier

Choke module 3 x 250 μ H, 5 A Choke module 3 x 150 μ H, 10 A Brake chopper

Performance Data

Electrical data

Supply voltage Vcc	12 - 50 VDC
 Max. output voltage 	$0.9 \times V_{CC}$
 Max. output current I_{max}: ADS 50/10 POWER ADS 50/5 STANDARD Continuous output output 	20 A 10 A
 Continuous output current I_{cor} ADS 50/10 POWER ADS 50/5 STANDARD Switching frequency of power Efficiency Band width current controller Built-in motor choke: ADS 50/10 POWER (Terminal inductance ADS 50/5 STANDARD 	nt [:] 5 A stage 50 kHz 95 % 2.5 kHz none min. 200 μH) 160 μH / 5 A
Inputs • Set value	-10 +10 V
Enable	$(R_i = 20 k\Omega)$ +4 +50 V $(B_i = 15 k\Omega)$
 DC tacho min. 2 VDC, max. 50 VDC Encoder signals Channel A, A B, B max 	(R _i = 14 kΩ) ax. 100 kHz, TTL
• Current monitor "Monitor I", short circuit protected -10 \	/DC +10 VDC
 Speed monitor "Monitor n", short circuit protected -10 \ 	$(n_0 = 10 \text{ ks2})$ /DC +10 VDC $(R_0 = 10 \text{ k}\Omega)$
 Status reading "Ready" Open collector 	max. 30 VDC (I _L < 20 mA)
Voltage outputs • Aux. voltage, short circuit prot +12 VDC, -12 V • Encoder supply voltage +5 V Trim potentiometers • IxR compensation • Offset	ected /DC, max. 12 mA /DC, max. 80 mA

- Offset
 nmax
- n_{max}
 I_{max}
- gain

•

LED indicator

2 colours, LED	green = READY
	red = ERROR

Ambient temperature- /

numuny range		
•	Operation	-10 +45°C
•	Storage	-40 +85°C
•	Non condensating	20 80 %

condensating	20 80 %
anical data	

Mechanical data Weight

•	Weight	approx. 360 g
•	Mounting plate:	Flange for M4-screws

Terminal

 PCB-clamps (plug-in terminal clamps) Power (5 poles), Signal (12 poles)
 Pitch: 3.81 mm suitable for wire cross section: 0.14 - 1 mm² multiple-stranded wire or 0.14 - 1.5 mm² single wire

• En	coder	0
Ρlι	Ig	DIN 41651
for wit	flat band cable, h AWG 28	1.27 mm

Note:

General specifications on ADS 4-Q-DC servoamplifier see page 220.

Technology – short and to the point

The maxon motor control program contains servo amplifiers for controlling the fast reacting maxon DC and EC motors.

Principle of a control circuit

Speed control

The function of the speed servo amplifier is to keep the prescribed motor speed constant and independent of load changes. To achieve this, the set value (desired speed) is continuously compared with the actual value (actual speed) in the control electronics of the servo amplifier. The controller difference determined in this way is used by the controller to regulate the power stage of the servo amplifier in such a manner that the motor reduces the controller difference. This represents a closed speed regulating circuit.

Position control

The positioning control ensures a match between the currently measured position with a target position, by providing the motor with the corresponding correction values, as with a speed controller. The position data are usually obtained from a digital encoder.

Current control

The current control provides the motor with a current proportional to the set value. Accordingly, the motor torque changes proportionally to the set value.

The current controller also improves the dynamics of a superior positioning or speed control circuit.

Digital encoder control

The motor is equipped with a digital encoder that provides a certain number of pulses per revolution. The turning direction is detected with the square pulses of channels A and B offset by 90 electric degrees.

- Digital encoders are often found in positioning controls, in order to derive and measure the travel or angle.
- Digital encoders are not subject to mechanical wear.
- In conjunction with digital controllers there are no drift effects.

IxR compensation

The motor is provided with a voltage that is proportional to the applied speed set value. The speed would drop with increasing motor load. The compensation circuitry increases the output voltage with increasing motor current. The compensation must be adjusted to the terminal resistance of the motor which depends on temperature and load. The attainable speed precision of such a system is subject to limits in the percent range.

- Favorably priced and space-saving
- No tacho-generator or encoder required Less precise control when there is a load
- change Only for DC motors
- Only analog speed control possible Ideal for low-cost applications without high demands on speed accuracy

Motor type

- maxon DC motor maxon EC motor with or without sensor

Type of control

- Position

Feedback

- Hall sensors

Power amplifiers

- Pulsed
- 1 quadrant 4 quadrant

Circuit technology

DC tacho control

The motor must be equipped with a DC tachometer that provides a speed proportional signal. In the maxon modular system, the tachometer rotor is mounted directly on the through motor shaft, resulting in a high resonant frequency.

- Classical solution of a very precise control Limited service life of the
- DC tacho generator
- Not suitable for positioning tasks _
- Only for analog controllers _
- Only for DC motors
- _ Ideal for stringent demands on speed dvnamics

Principle: DC tachometer control

Program

maxon motor control

4-Q servoamplifiers for DC motors Sensorless controllers for EC motors 1-Q and 4-Q servoamplifiers for EC motors Position controllers for DC and EC motors

4-Q operation:

- Controlled motor operation and braking operation in both rotation directions
- A must for positioning tasks

1-Q operation:

- Only motor operation (Quadrant I or Quadrant III)
- Direction reverse via digital signal Typical: amplifier for EC motors

Power amplifiers

One of the following two principles to control the power stage transistors is used in maxon controllers:

a) Linear power stage

The operating voltage is divided between the motor and the power amplifier. The controller changes the voltage on the motor (U_M) linearly and proportionally. The voltage applied to the power amplifier (U_T) causes power dissipation

- High currents and low motor voltages cause significant power dissipation
- Simple and favorably priced design of the power amplifier

b) Pulsed power stage (PWM)

The controller switches the motor on and off in short intervals (pulses / cycles). If the off interval is longer, the motor loses speed. The decisive average value of the voltage changes in relation to the on-to-off time. Only little energy is converted into heat.

- More expensive power amplifier
- _ High efficiency
- Principle: Pulsed power amplifier +Vc Vcc O лл Pulse v, generato ower stag Gnd O Vcc maxon motor control

Quadrant II Braking CW Set value maxon motor control + М Actual value Quadrant III Motor Drive CCW

4-Q operation

motor control maxon