
1

PSoCEval User Guide
and Example Projects

Cypress MicroSystems, Inc.
2700 162nd Street SW, Building D

Lynnwood, WA 98037
Phone: 800.669.0557

Fax: 425.787.4641

2 3

TABLE OF CONTENTS

Introduction to the PsoCEval3
What Comes with my PSoCEval?4
PSoCEval Power Supply Options..............................6
Introduction to MiniProg ...7
Specifications for MiniProg9
Operating Changes to the PsoCEval9

Introduction to Example Projects.............................10
 Example #1 ADC Conversion and LCD Display11
 Example #2 Blink an LED...16
 Example #3 Output a SINE Wave..19
 Example #4 Dynamically Re-configure a PWM24
 Example #5 Combine PWMs using Output Logic29

Cypress Support ...32

INTRODUCTION TO PSOCEVAL

Welcome to the new exciting world of the PSoCEval!

PSoCEval allows you to evaluate what PSoC has to offer. The
board includes an LCD module, potentiometer, LEDs, and plenty
of breadboard space. This user guide includes five different
example projects that can be used with the PSoCEval board. The
MiniProg can program both the PSoC on your PSoCEval board or
on a proto board you might build using a five-pin header.

The example projects can answer your questions. Want to see how
PSoC can talk with an LCD? Hook up the LCD module and output
your sensor’s data. Curious how PSoC’s dynamic re-configuration
is reshaping how designers do business? Switch back and forth
between different types of PWMs. Test both the digital and analog
resources of our system-on-a-chip in your application.

Use PSoCEval to gain insight into how the PSoC’s breadth of
flexibility and functionality can work for you!

4 5

WHAT COMES WITH MY PSOCEVAL?

Please confirm that your kit includes the following items:

• PSoCEval Evaluation Board
• MiniProg Programmer
• LCD Module
• CY8C29466-24PXI 28-Pin DIP Sample
• PSoC Designer CD
• USB Cable
• Wire Pack
• User Guide

For additional technical information a schematic is available online

at www.cypress.com/ >> Developer Kits.

Regulator

RS232
Transceiver

ISSP Header

Reset
Button

POT

Button

LCD
Contrast

LCD Module

Breadboard

6 7

PSOCEVAL POWER SUPPLY OPTIONS

The following are PSoCEval power supply options:
1. Powered by the MiniProg unit.
2. Powered by a 9-12V DC wall transformer with

positive tip barrel plug and a 100 mA or higher rating.
Recommended model is CUI Inc., EPAS-101W-12.

3. Powered by a 9V battery connected to battery terminals.
4. Powered from the ICE pod in socket.

Only one of the power supplies should be used at a time. Do not
use a power supply that is less than 9V or exceeds 12V.

INTRODUCTION TO MINIPROG

The Cypress MicroSystems MiniProg gives you the ability to
program PSoC parts quickly and easily.

It is small and compact, and connects to your PC using the
provided USB 2.0 cable.

During prototyping, the MiniProg can be used as an in-system
serial programmer (ISSP) to program PSoC devices on your PCB.
(See Application Notes AN2014 and AN2026 available online at
www.cypress.com for more details.)

For production purposes, it is recommended that you use the
CY3207ISSP programmer or a third-party production programmer.

Once the MiniProg is connected, you can use PSoC Programmer
software to program. (This free software can either be launched
from within PSoC Designer or run as a stand alone program.)

8 9

SPECIFICATIONS FOR MINIPROG

The operating temperature of the MiniProg is from 0° C to 50° C.

Always plug the USB cable into the MiniProg before attaching it
to the five-pin header on the board.

When using an ISSP adapter cable with MiniProg, keep the length
under six inches to avoid signal integrity issues.

When using MiniProg, the LEDs blink at a variable rate to track
connection status. The green LED near the USB connector turns
on after MiniProg is plugged into the computer and configured by
the OS. If MiniProg cannot find the correct driver in the system,
this LED will not turn on. After the device has been configured,
the LED stays on at about a 4-Hz blink rate. This changes during
programming, where the blink duty cycle increases.

The red LED at the bottom turns on when the MiniProg powers the
part. The LED is off when power is provided by the target board.

OPERATING CHANGES TO THE PSOCEVAL

To use an external 32 kHz crystal oscillator, R8 and R9 on the
PSoCEval board must be removed. C9 and C10 must be added,
with values determined by the type of feedback desired. It is
recommended that you use unbalanced feedback, with C9 at 12
pF and C10 at 100 pF. (See Application Note AN2027 online at
www.cypress.com for complete details.)

To use PSoCEval at 3.3V, two parts will need to be swapped on the
board: the regulator and the RS232 transceiver, shown in Figure 1.
Suitable replacements or their equivalents are as follows:

Regulator:
TI UA78M33CKTPR
(Digikey 296-13425-1-ND)

RS232 Transceiver:
Maxim MAC3232CSE
(Digikey MAX3232CSE-ND)

10 11

INTRODUCTION TO EXAMPLE PROJECTS

Four Example Projects are described in the following sections.
Each section is organized as follows:

Project Name: PSoC Designer project name.

Purpose: Overview of the project.

Implementation: Describes the funtionality.

Connections: Pin connections to wire up the PSoCEval board.
Pictures are included to help you verify your wiring for each
project.

Example Code (main.asm): Code to run the project.

The example projects are available in PSoC Designer. To use
them, open PSoC Designer and browse to select the correct
file. The example projects are found in …\Program Files\Cypress
MicroSystems\ PSoC Designer\Examples. Choose the chip type you
desire and open the project’s .soc file (CY8C29x66 comes with the
PSoCEval board).

When using the MiniEval programmer, do not use the “Connect”
and “Download” buttons in PSoC Designer. Theys are for use with
an In-Circuit Emulator (ICE).

EXAMPLE PROJECT #1 ADC CONVERSION
AND LCD DISPLAY

Project Name: ASM_Example_ADC_UART_LCD

Purpose: To demonstrate the 12-bit incremental ADC by
measuring the voltage of the potentiometer, transmitting the
conversion result out the UART, and displaying it on the LCD.

Implementation: This project enables the LCD, UART and
ADCINC12, and then goes into an endless loop.

In the loop, the ADC status (as it monitors the potentiometer) is
checked. If the ADC has completed a conversion, the result is
placed in “iResult” and the HEX value is transmitted out the serial
port and displayed on the LCD as ASCII text.

The clock divider VC1 provides a sample clock of 3 MHz to the
ADCINC12, resulting in a sample rate of 180 samples per second.

The clock divider VC3 generates the baud clock for the UART by
dividing 24 MHz by 156.

The UART internally divides VC3 by 8, resulting in a baud rate of
19,200 bps.

12 13

Connections:
P01 -> VR = ADC Input (0-Vdd)
P16 -> RX = Serial RX
P27 -> TX = Serial TX

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”
// include User Module API specific declarations
include “psocapi.inc”

export _main:

// inform assembler that variables follow
area bss(RAM)
// ADC result variable
iResult: blk 2
// inform assembler that program code follows
area text(ROM,REL)

_main:
 mov A, UART_PARITY_NONE
 // Enable UART
 lcall UART_1_Start

 mov A, >sRomString1
 mov X, <sRomString1
 // Display example string
 lcall UART_1_CPutString
 lcall UART_1_PutCRLF
 mov A, PGA_1_MEDPOWER
 // Turn on PGA power
 lcall PGA_1_Start
 mov A, ADCINC12_1_MEDPOWER
 // Turn on ADC power
 lcall ADCINC12_1_Start

14 15

 mov A, 0
 // Sample forever
 lcall ADCINC12_1_GetSamples
 // Init the LCD
 lcall LCD_1_Start
 // row
 mov A, 0

 // column
 mov X, 0
 lcall LCD_1_Position
 mov A, >sRomString2
 mov X, <sRomString2

 // Display string
 lcall LCD_1_PrCString

 // Enable Global interrupts
 M8C_EnableGInt
loop:
 // If conversion complete....
 lcall ADCINC12_1_fIsDataAvailable
 jz loop

 // Get result, convert to unsigned and clear flag
 lcall ADCINC12_1_iGetData
 mov [iResult+1], A
 mov [iResult+0], X
 // add 0x0800 to result
 add [iResult+0], 0x08
 lcall ADCINC12_1_ClearFlag

 mov A, [iResult+1]
 mov X, [iResult+0]

 // Print result to UART
 lcall UART_1_PutSHexInt
 // Tack on a CR and LF
 lcall UART_1_PutCRLF

 // row
 mov A, 1

 // column
 mov X, 0
 // display result in hex
 lcall LCD_1_Position
 mov A, [iResult+1]
 mov X, [iResult+0]
 lcall LCD_1_PrHexInt

 jmp loop

area lit

sRomString1:
DS “Example ADC_UART_LCD”
db 00h

sRomString2:
DS “PSoC LCD”
db 00h

area text

16 17

EXAMPLE PROJECT #2 BLINK AN LED

Project Name: ASM_Example_Blink_LED

Purpose: To demonstrate blinking an LED at a varying duty cycle
using a hardware PWM.

Implementation: The clock dividers VC1, VC2, and VC3 are used
to divide the 24 MHz system clock by 16, 16 and 256, respectively.
The resulting 366 Hz clock is used as the input to an 8-bit PWM.
This in turn produces an LED blink period of 1.4 Hz.

Connections:
P20 -> LED1

18 19

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”
// include User Module API specific declarations
include “psocapi.inc”
export _main:

_main:
 // Enable PWM
 lcall PWM8_1_Start
 lcall PWM8_1_EnableInt

 // Enable Global interrupts
 M8C_EnableGInt
loop:
 jmp loop

EXAMPLE PROJECT #3 OUTPUT A SINE WAVE

Project Name: ASM_Example_DAC_ADC

Purpose: To demonstrate a PSoC project that outputs a SINE wave
using a 6-bit DAC. The SINE wave period is based on the current
ADC value of the potentiometer.

Implementation: This project uses a 64-entry SINE look-up table
to generate values used to update a 6-bit DAC. An 8-bit counter is
utilized to generate an interrupt at the DAC update rate (1/64 SINE
wave period). By adjusting the counter period, the DAC frequency
and the resulting SINE frequency may be modified. The counter
period is reloaded with the current ADC conversion value. The
ADC input voltage may be between 0 and Vdd volts depending on
the potentiometer. At higher frequencies, SINE wave jitter may be
observed due to the large timing impact of a one-count change in

the ADC conversion.

20 21

Connections:
P01 -> VR = ADC Input (0-Vdd)
P05 -> LED1 -> Scope = DAC Output (0-Vdd)

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”
// include User Module API specific declarations
include “psocapi.inc”

export _main
export bADCvalue
export bTablePos
export SINtable

// inform assembler that variables follow
area bss(RAM)

// Store ADC value for debug watch variable
bADCvalue: blk 1

// Stores last table position index
bTablePos: blk 1

// inform assembler that program code follows
area text(ROM,REL)
_main:
 // starts DAC value update counter
 lcall Counter8_1_Start
 lcall Counter8_1_EnableInt
// Turn on PGA power
 mov A, PGA_1_MEDPOWER
 lcall PGA_1_Start

 // Turn on DAC power
 mov A, DAC6_1_HIGHPOWER

22 23

 lcall DAC6_1_Start
 // Turn on ADC power
 mov A, DELSIG8_1_HIGHPOWER
 lcall DELSIG8_1_Start
 lcall DELSIG8_1_StartAD

 // Enable Global interrupts
 M8C_EnableGInt

loop:
 // if ADC conversion complete then.....
 lcall DELSIG8_1_fIsDataAvailable
 jz loop
 // get ADC result and convert to offset binary
 lcall DELSIG8_1_cGetDataClearFlag
 add A, 0x80
 // store value for debug watch variable
 mov [bADCvalue], A

 // counter period less then 0x03 is invalid
 cmp A, 0x03
 // excessive interrupt servicing
 jnc LoadCounter
 mov A, 0x03

LoadCounter:
 // update DAC update rate
 lcall Counter8_1_WritePeriod
 jmp loop

area lit

// 64 entry SINE look-up table
SINEtable:
db 31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55, 56, 58,
59, 59
db 60, 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44,
42, 39
db 36, 33, 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3,
2, 1, 0
db 0, 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23,
26, 29

area text

24 25

EXAMPLE PROJECT #4 DYNAMICALLY
RE-CONFIGURE A PWM

Project Name: ASM_Example_Dynamic_PWM_PRS

Purpose: To demonstrate PSoC’s dynamic re-configuration
capability by switching a digital block between a PWM8 and a
PRS8 (Pseudo Random Sequence). This example project also
demonstrates the advantages of using a PRS to generate a pulse
width. A benefit of the PRS is that it does not generate the strong
frequency harmonics of an equivalent PWM.

Implementation: The clock dividers VC1, VC2, and VC3 are
used to divide the 24 MHz system clock by 16, 16, and 128,
respectively. The resulting 732 Hz clock becomes the input to an 8-
bit Counter User Module in the base configuration (this is the first
configuration in PSoC Designer).

If the SW button connected on the PSoCEval board is released,
configuration PWM_config is loaded and a period of two is loaded
into the counter.
If the button is pressed and held, configuration PRS_config is
loaded and a period of 128 is loaded into the counter.

The PWM configuration contains a standard 8-bit PWM with
a duty cycle of 50%. Both the pulse width and terminal count
outputs are displayed on LEDs.

The PRS configuration contains a PRS with pulse density
(analogous to pulse width) and shifted bit stream output on LEDs.

Connections:
P14 -> SW = User Button
P20 -> LED1 = PWM Pulse Width or PRS Pulse Density
P22 -> LED2 = PWM Terminal Count
P23 -> LED3 = PRS Bit Stream

26 27

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”
// include User Module API specific declarations
include “psocapi.inc”
export _main:

_main:
 // configure port pins
 and reg[PRT1DR], ~0x10
 mov reg[PRT2DR], 0x00

 // start clock generator
 lcall Counter8_1_Start

 // load PRS configuration
 lcall LoadConfig_PRS_Config
 jmp PWM
PRS:
 // stop and unload PWM configuration
 lcall PWM8_1_Stop
 lcall UnloadConfig_PWM_Config
 // then load PRS config
 lcall LoadConfig_PRS_Config

 // update clock divider, don’t wait for period
 reload
 lcall Counter8_1_Stop

 mov A, 0x7F
 lcall Counter8_1_WritePeriod
 lcall Counter8_1_Start
 // configure and start PRS
 mov A, 0x01
 lcall PRS8_1_WriteSeed
 mov A, 0xB8
 lcall PRS8_1_WritePolynomial
 lcall PRS8_1_Start
 // load compare value, must be loaded after PRS is
 started
 mov reg[PRS8_1_SEED_REG], 0x7F

PRSloop:
 // wait for button release
 tst reg[PRT1DR], 0x10
 jnz PRSloop
 // simple debounce
 tst reg[PRT1DR], 0x10
 jnz PRSloop
 jmp PWM

PWM:
 // stop and unload PRS configuration
 lcall PRS8_1_Stop
 lcall UnloadConfig_PRS_Config
 // then load PWM config
 lcall LoadConfig_PWM_Config
 // update clock divider, don’t wait for period
 reload
 lcall Counter8_1_Stop

28 29

 mov A, 0x01
 lcall Counter8_1_WritePeriod
 lcall Counter8_1_Start

 // configure and start PWM
 mov A, 0xFF
 lcall PWM8_1_WritePeriod
 mov A, 0x7F
 lcall PWM8_1_WritePulseWidth
 // enable PWM
 lcall PWM8_1_Start

PWMloop:
 // wait for button release
 tst reg[PRT1DR], 0x10
 jz PWMloop
 // simple debounce
 tst reg[PRT1DR], 0x10
 jz PWMloop
 jmp PRS

EXAMPLE PROJECT #5 COMBINING PWMS
USING OUTPUT LOGIC

Project Name: ASM_Example_LED_Logic

Purpose: To demonstrate a PSoC project designed to blink an LED
using the output of two PWMs. The outputs are combined using an
AND gate in an output bus logic block. This logical combination
results in a beat frequency of 1.4 Hz.

Implementation: The clock dividers VC1 and VC2 are used to
divide the 24 MHz system clock by 16 and 16, respectively. The
resulting 93.37 kHz clock becomes the input to the two 8-bit
PWM User Modules with respective periods of 256 and 255. This
produces the LED beat frequency of 1.4 Hz.

30 31

Connections:
P20 -> LED1

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”

// include User Module API specific declarations
include “psocapi.inc”

export _main:

_main:
 // Enable PWM1
 lcall PWM8_1_Start
 // Enable PWM2
 lcall PWM8_2_Start

loop:
 jmp loop

32

CYPRESS CUSTOMER SUPPORT

We are committed to meeting your every need.

For more information about PSoC, check us out on the web at
www.cypress.com/psoc. There you will find data sheets, hundreds
of application notes, contact information for local PSoC certified
consultants, and recorded tele-training modules for newcomers to
the PSoC world.

We offer live tele-training sessions regularly. Check online at
www.cypress.com/support/training.ctm for the next scheduled
time.

For application support please contact us online or call between 8
am – 6 pm PST at 1.800.669.0557 ext. 4814. We offer a four-hour
response time at our call center during normal business hours.

http://www.cypress.com/ http://www.cypress.com/support/
mysupport.cfm

Copyright © 2004 Cypress MicroSystems, Inc. All rights reserved.
PSoC™, Programmable System-on-Chip™, and PSoC Designer™
are trademarks of Cypress MicroSystems, Inc. All other trademarks
or registered trademarks referenced herein are the property of their
respective owners. The information contained herein is subject to
change without notice. Made in the U.S.A.

