The information contained in this documentation is the property of MAZeT. Photocopying or otherwise reproducing any part of the catalog, whether electronically or mechanically, is prohibited, except where the express permission of MAZeT GmbH has been obtained. In general, all company and brand names, as well as the names of individual products, are protected by brand, patent or product law.

VERSION CHANGE					
NO.	ISSUE		APPROVED		
1	V 1.5		2007-08-01		

Data Sheet

MTCS - TIAM2

Integral True Color Sensor IC XYZ Tri-stimulus function with integrated amplifier

Table of Contents

1 INTRODUCTION	2
2 APPLICATION	2
3 FEATURES	2
4 BLOCK DIAGRAM	3
5 SPECTRAL RESPONSE	4
6 DESCRIPTION OF INTERFACE	5
6.1 Adjustment of Transimpedance	5
6.2 Power Down Modus	5
7 SPECIFICATION	6
7.1 ELECTRICAL AND OPTICAL CHARACTERISTICS OF PHOTO DIODE ARRAY	6
7.2 ELECTRICAL CHARACTERISTICS	6
7.3 AC/DC-Characteristics	7
7.4 Maximum Conditions	9
8 PACKAGE AND OUTLINE DIMENSIONS	10
9 PIN-CONFIGURATION	11
10 SOLDERING PROFILE	12
11 APPLICATION NOTE	12
12 ORDERING INFORMATION	14

MAZeT GmbH Sales
Göschwitzer Straße 32
07745 JENA / GERMANY
Phone: +49 3641 2809-0
Fax: +49 3641 2809-12
E-Mail: sales@MAZeT.de
Url: http://www.MAZeT.de

	Approvals	Date	MAZeT GmbH			
	Compiled:	2007-08-01	Status: valid			
	Checked:	2007-08-01				
	Released:	2007-08-01	DOC. NO.: DB-06-202	Page 1 of 14		
;						

	VERSION	
NO.	ISSUE	APPROVED
1	V 1.5	2007-08-01

1 INTRODUCTION

MTCS – TIAM2 is a True Color Sensor IC with integrated amplifier. The IC is packaged into a FR4-board / plastic package. It includes XYZ (RGB) filters and is specialized for color measurements based on the tri-stimulus function.

The True Color Sensors are made of 19 x 3 photo diodes (special PIN silicon technology with extended sensibility) integrated on chip. The diodes are carried out as segments of a multiple-element hexagonal matrix structure with the diameter of 2,0 mm.

The design as Si-PIN photo diodes allows signal frequencies up to high-range. In order to achieve a small cross talk between the photodiodes the individual sectors were separated from each other by additional structures.

Each of these photodiodes is sensitized with new dielectric spectral filter (named True Color Filter¹) for its color range, preferably for the primary color standard CIE (Commission Internationale de l'Eclairage or International Commission on Illumination) color space.

The TIAM2 comes with an integrated multi-channel amplifier (see also the data sheet MTI04 of MAZeT) with the ability to set customized the transimpedance at eight different levels. It gives the customer a wide area in which to accommodate all application requirements in light power and frequency.

2 APPLICATION

- General Color detection and measurements
- Consumer appliances
- Portable color detector/reader
- RGB-LCD backlight monitors
- Regulation of RGB-power LEDs
- Detector for various light sources

3 FEATURES

Dielectric filters guaranties the good optical properties of the color sensors, such as:

- high transmission
- slight ageing of the filter
- high temperature stability
- high signal frequency
- reduced cross talk
- small size
- alike tri-stimulus interference filter for color measurement to DIN 5033 (CIE 1931)
- LCC package
- RoHS-conform

Figure 1: TIAM2

¹ The new generation of JENCOLOR sensors is committed to implementing (see relative sensitivity) the standard distribution functions as defined under DIN 5033 Part 2 – Color Measurement; CIE 1931 Standard Colorimetric Systems. This implementation method allows colors to be determined according to the three-range procedure that is defined in part 6 of DIN 5033.

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E Page 2 of 14

	VERSION	
NO.	ISSUE	APPROVED
1	V 1.5	2007-08-01

4 BLOCK DIAGRAM

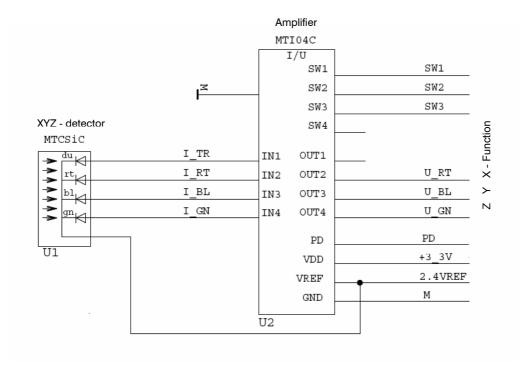


Figure 2: on Chip detector MTCSi and amplifier MTI04C

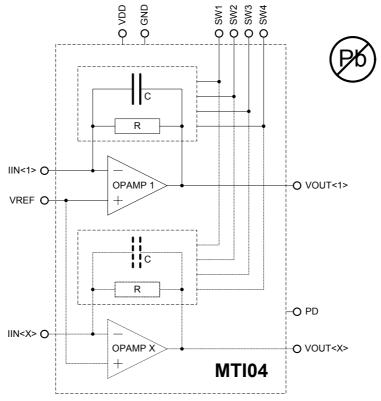


Figure 3: amplifier corresponds the MTI04C

VERSION				
NO.	ISSUE	APPROVED		
1	V 1.5	2007-08-01		

5 SPECTRAL RESPONSE

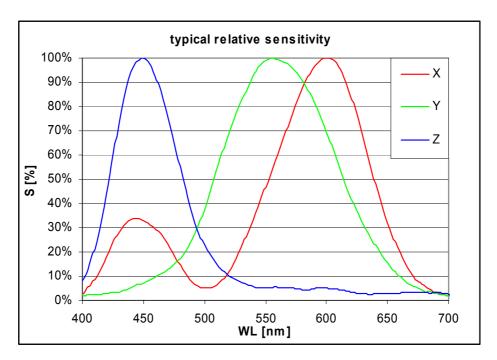


Figure 4: typical (relative) sensitivity (XYZ) of the color sensor2, scanned by width broadband light (FWHM 30nm)

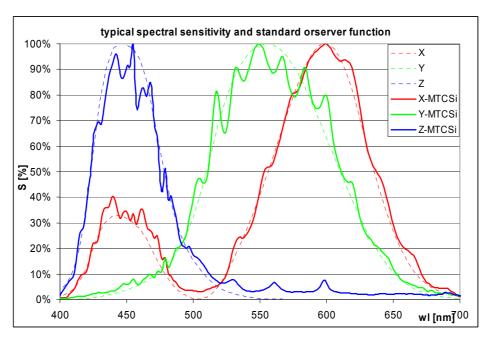


Figure 5: typical (relative) sensitivity (XYZ) of the color sensor3 scanned by narrow-band light (FWHM 3nm)

³ Typical characteristic sensitivity; scanned by monochromatic light with FWHM 2nm

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E

Page 4 of 14

² Typical characteristic sensitivity; scanned by monochromatic light with FWHM 27nm

		VERSION	
NO.	ISSUE		APPROVED
1	V 1.5		2007-08-01

6 DESCRIPTION OF INTERFACE

signal name	typ.	a/d ^a	function	
VDD	input	a/d	power supply	
GND	input	a/d	power supply	
VREF	input	а	reference voltage	
SW1	input	d	input 1 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW2	input	d	input 2 for adjustment of transimpedance of MTI- amplifier (pull down)	
SW3	input	d	input 3 for adjustment of transimpedance of MTI- amplifier (pull down)	
PD	input	d	power down modus (pull down)	
VOUT <n></n>	output	а	analog voltage output of amplifier channel n for	
			X Y Z function of detector (see chapter 5)	

a.) analog or digital

6.1 Adjustment of Transimpedance

settings of digital inputs			
SW1	SW2	SW3	transimpedance R
VDD	VDD	VDD	20MΩ – stage 1
GND	VDD	VDD	10MΩ − stage 2
GND	VDD	GND	5MΩ – stage 3
VDD	GND	VDD	2MΩ – stage 4
GND	GND	VDD	1MΩ – stage 5
VDD	GND	GND	500k Ω – stage 6
VDD	VDD	GND	100kΩ – stage 7
GND	GND	GND	25kΩ ^b – stage 8

b.) default by pull down

6.2 Power Down Modus

settings of digital input	
PD = 1	bias current of the IC
VDD	< 8μA
GND	typical ^c

c.) default by pull down

The information contained in these documents reflects the current state of the art at the	DOC. NO:	Page 5 of 14
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the	DB-06-202E	
documentation.		

VERSION					
	NO.	ISSUE	APPROVED		
	1	V 1.5	2007-08-01		

7 SPECIFICATION

7.1 ELECTRICAL AND OPTICAL CHARACTERISTICS OF PHOTO DIODE ARRAY

 $(T_A = 25^{\circ}C; per single diode)$

Parameter	Symbol	Condition	min.	typ.	max.	Unit
Diameter of the light sensitivity area	D			2,0		mm
Light sensitivity area per single color array (19 diodes)	А			0,76		mm²
Typical photo diode sensitivity of color ranges	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$	0,21 0,30 0,11 0,31	0,23 0,33 0,12 0,35	0,25 0,36 0,13 0,38	A/W
Spectral tolerance of filter curve	Δλ(λ)				<1%*λ	nm
Reverse voltage	V _R		0	2,5	5	V
Dark current	I _R	$V_R = 2,5V$			10	рА
Noise equivalent power	NEP	f _R = 100 Hz			<10 ⁻¹³	W/√H z
Cross-talk					<1	%
Angle of incidence	φ	$\Delta\lambda_{(Filter)} < 1\%*\lambda$			10	Grad

7.2 ELECTRICAL CHARACTERISTICS

All voltages are referenced to GND = 0V.

Parameter	Symbol	Condition	min.	typ.	max.	Unit
supply voltage	VDD		2.7	3 to 5	5.5	٧
bias current MTI04	I(VDD)	27°C, VDD=5.5V		2.5	4.0	mA
bias current MTI04 (power down mode)	I(VDD)	PD=VDD			8	μΑ
reference voltage	VREF		0.4		VDD-0.4	٧

The information contained in these documents reflects the current state of the art at the	DOC. NO:	Page 6 of 14
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the	DB-06-202E	o o
documentation.		

VERSION						
NO.	ISSUE		APPROVED			
1	V 1.5		2007-08-01			

7.3 AC/DC-Characteristics

Unless otherwise specified the data in this table is valid for $T_{OP}=27^{\circ}C$ and VDD=5V. All voltages are referenced to GND=0V.

Parameter	Symbol	Condition	min.	typ.	max.	Unit
		stage 20MΩ	14000	20000	26700	kΩ
		stage 10MΩ	7000	10000	13350	kΩ
		stage $5M\Omega$	3500	5000	6700	kΩ
		stage 2MΩ	1400	2000	2670	kΩ
feedback resistor	R	stage 1MΩ	700	1000	1335	kΩ
		stage 0,5MΩ	350	500	670	kΩ
		stage 0,1MΩ	70	100	133	kΩ
		stage 0,025M Ω	17	25	34	kΩ
Typical photo sensitivity of color ranges at stage $20M\Omega$ Typical photo sensitivity of color ranges at stage $10M\Omega$	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$ $\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$ $\lambda_{Z} = 445 \text{ nm}$		34,9 50,1 18,2 53,2 17,5 25,1 9,1 26,6		V/ (μW/cm²) V/ (μW/cm²)
Typical photo sensitivity of color ranges at stage $5M\Omega$	S _{max}	$\lambda_{\rm X} = 445 {\rm nm}$ $\lambda_{\rm Y} = 555 {\rm nm}$ $\lambda_{\rm Xk} = 445 {\rm nm}$ $\lambda_{\rm Xl} = 600 {\rm nm}$		4,5 13,3		V/ (μW/cm²)
Typical photo sensitivity of color ranges at stage $2M\Omega$	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		3,5 5,0 1,8 5,3		V/ (μW/cm²)

The information contained in these documents reflects the current state of the art at the	DOC. NO:	Page 7 of 14
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the	DB-06-202E	G
documentation.		

VERSION					
NO.	ISSUE		APPROVED		
1	V 1.5		2007-08-01		

		I	V 1.5	ı	2007-00-01	
Parameter	Symbol	Condition	min.	typ.	max.	Unit
Typical photo sensitivity of color ranges	S _{max}	$\lambda_{\rm Z} = 445 \ {\rm nm}$ $\lambda_{\rm Y} = 555 \ {\rm nm}$ $\lambda_{\rm Xk} = 445 \ {\rm nm}$		1,75 2,51 0,91		V/ (μW/cm²)
at stage 1MΩ		$\lambda_{XI} = 600 \text{ nm}$		2,66		,
Typical photo sensitivity of color ranges at stage $0.5 \text{M}\Omega$	S _{max}	$\lambda_{Z} = 445 \text{ nm}$ $\lambda_{Y} = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		0,874 1,254 0,456 1,330		V/ (µW/cm²)
Typical photo sensitivity of color ranges at stage $0.1 \text{M}\Omega$	S _{max}	$\lambda_{Z} = 445 \text{ nm}$ $\lambda_{Y} = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		0,175 0,251 0,091 0,266		V/ (µW/cm²)
Typical photo sensitivity of color ranges at stage $0,025M\Omega$	S _{max}	$\lambda_{Z} = 445 \text{ nm}$ $\lambda_{Y} = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		0,044 0,063 0,023 0,067		V/ (µW/cm²)
		stage 20MΩ, T _{OP}	4	6	16	kHz
		stage $10M\Omega$, T_{OP} stage $5M\Omega$, T_{OP}	7 11	11	28 42	kHz kHz
signal frequency	f _{3dB}	stage 2MΩ, T _{OP}	18	26	66	kHz
		stage 1M Ω , T _{OP}	25	35	95	kHz
		stage 0,5MΩ, T _{OP}	35	50	130	kHz
		stage 0,1MΩ, T _{OP}	80	120	280	kHz
temperature coefficient of the feedback resistor	TC _R	stage 0,025MΩ, T _{OP}	160	300 -3300	580	kHz ppm/K

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E

Page 8 of 14

	VERSION	
NO.	ISSUE	APPROVED
1	V 1.5	2007-08-01

Parameter	Symbol	Condition	min.	typ.	max.	Unit
offset voltage	V _{OFF} ⁴	T_OP	-10		10	mV
capacitive load at VOUT <x></x>	C_{LOAD}	I _{LOAD} < 0.5mA per output			50	pF
pull down current SW1, SW2, SW3, SW4, PD	I _{PDPAD}	digital inputs			200	μΑ
tolerance of the feedback resistors between the four channels	TOL _R ⁵	DC input current;	1		10	%

7.4 Maximum Conditions

Violations of absolute maximum conditions are not allowed under any circumstances, otherwise the IC can be destroyed. All voltages are referenced to GND = 0V.

Parameter	Symbol	min.	max.	Unit
power supply	VDD	0.3	7.0	V
input and output voltages	⇒ IC-pinning	0.3	VDD+0.3	V
power dissipation	POP		0.025	W
operating temperature	TOP	-40	+ 100	°C
storage temperature	TSTG	-40	+ 100	°C

⁵ up to max. 1% available on request

DOC. NO: The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to DB-06-202E make technical changes to the equipment and components described in the documentation.

Page 9 of 14

⁴ V_{OFF} = VOUT<X> - VREF; results from input offset voltage and input leakage current

VERSION					
NO.	ISSUE	APPROVED			
1	V 1.5	2007-08-01			

8 PACKAGE AND OUTLINE DIMENSIONS

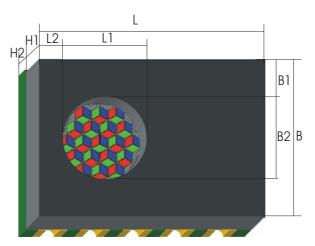


Figure 6: Sizes of packaged TIAM2

	H1+H2	H1	H2	L	L1	L2	В	B1	B2
mm	2,30	1,50 ⁶	0,80	6,50	2,00	0,95	5,00	1,50	2,00
Tol.	±0,20	±0,10	±0,10	±0,05	±0,05	±0,05	±0,05	±0,05	±0,05

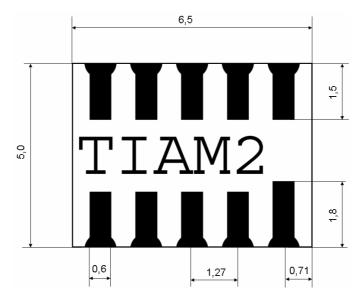


Figure 7: Pad dimensions

⁶ standard device for series

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E

Page 10 of 14

			TIARA
DAIA	SHFFT	WH (.5 -	- IIAWバ

VERSION						
NO.	ISSUE	APPROVED				
1	V 1.5	2007-08-01				

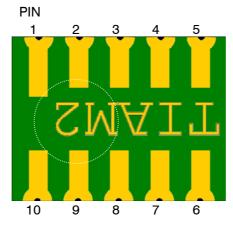


Figure 8: PIN configuration TIAM2 - Bottom view

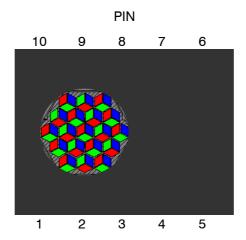


Figure 9: PIN configuration MTCS-TIAM2 Top View

9 PIN-CONFIGURATION

Pin	Name	IN-/OUTPUT	A/D	Description
1	PD	INPUT	D	power down modus (pull down)
2	VOUT Y	OUTPUT	Α	analogue voltage output Y
3	VOUT Z	OUTPUT	Α	analogue voltage output Z
4	VOUT X	OUTPUT	Α	analogue voltage output X
5	SW3	INPUT	D	input 3 for adjustment of transimpedance of MTI-amplifier (pull down)
6	VDD	INPUT	D/A	power supply
7	SW2	INPUT	D	input 2 for adjustment of transimpedance of MTI-amplifier (pull down)
8	SW1	INPUT	D	input 1 for adjustment of transimpedance of MTI-amplifier (pull down)
9	GND	INPUT	D/A	ground
10	VREF	INPUT	Α	reference voltage

The information contained in these documents reflects the current state of the art at the						
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to						
make technical changes to the equipment and components described in the						
documentation						

DOC. NO:	Page 11 of 14
DB-06-202E	

	VERSION	
NO.	ISSUE	APPROVED
1	V 1.5	2007-08-01

10 SOLDERING PROFILE

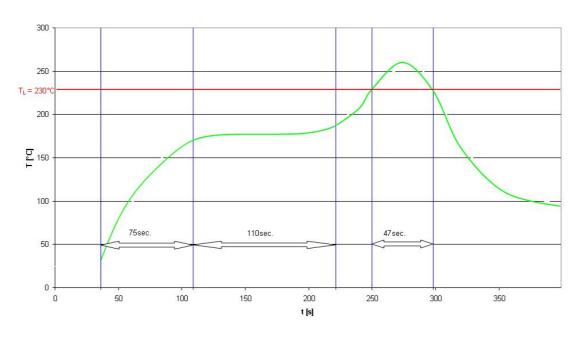
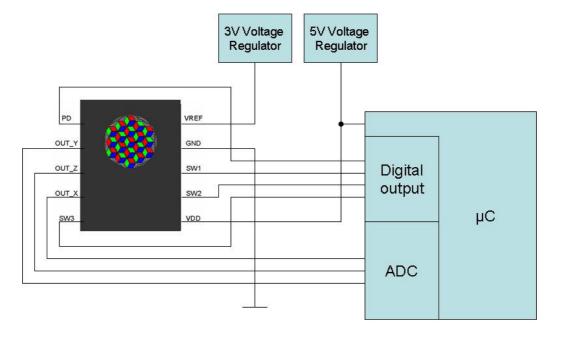



Figure 10: SOLDERING PROFILE

11 APPLICATION NOTE

In the following there is an example for connection of TIAM 2 to a μ c-based measurement system. Please note the necessary connection of Vref (e.g. 3V, depend on the used ADC) and Vdd (e.g. 5V). Alternatives are possible within the settings (see chapter 7).

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E

Page 12 of 14

SHFFT	MTCS -	- TIAM2

VERSION						
NO.	ISSUE	APPROVED				
1	V 1.5	2007-08-01				

The TIAM2 includes an multichannel amplifier of MAZeT. The amplifier can be switched smoothly to the required amplification stage via μ C programming, e.g. if input variables fail to reach or exceed a set threshold. Transimpedance programming is carried out via three inputs and affects all channels simultaneously (see also chapter 6.1). In the following there is a preposition for an algorithm to switch automatically the required amplification via μ C.

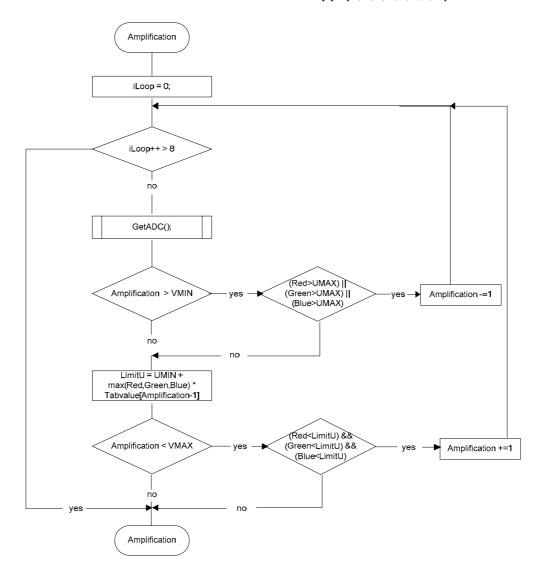


Figure 11: μ C-based Algorithm for calculation of an automatic switch of the 8-staged amplification

The information contained in these documents reflects the current state of the art at the										
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to										
make	technical	changes	to	the	equipment	and	components	described	in	the
docun	nentation.	_								

DOC.	NO:
DB-06-	202E

	VERSION	
NO.	ISSUE	APPROVED
1	V 1.5	2007-08-01

12 ORDERING INFORMATION

True Color sensor with integrated amplifier

MTCS-TIAM2

For further information please contact:

MAZeT GmbH Sales office:

Göschwitzer Straße 32 07745 JENA GERMANY

Phone: +49 3641 2809-0 Fax: +49 3641 2809-12 E-Mail: sales@MAZeT.de URL: http://www.MAZeT.de

WARNINGS

Personal Injury – Do not use these products as safety or emergency stop devices, or in any other applications where failure of the product could result in personal injury. **Failure to comply with these instructions could result in death or serious injury.**

Misuse of Documentation – The information presented in this data sheet is for reference only. Because this products are under development do not use this document as product installation guide. Before you start any development ask your supplier for the latest version of this sheet. **Failure to comply with these instructions could result in death or serious injury.**

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation.

DOC. NO: DB-06-202E Page 14 of 14