Features
* Pre-programmed bootloader for AVR UC3 A0, A1, A3, B0, B1 series
* USB DFU Bootloaders up to version 1.0.3
* USB Protocol
— Based on the USB Device Firmware Upgrade (DFU) Class
— Autobaud (8-, 12- and 16-MHz Crystal on Osc0)
* In-System Programming (ISP) _®

— Configurable I/0O Start Conditions (default is pressing the joystick on EVK1100 and
EVK1101, SW2 button on EVK1104). Protected by 8-Bit CRC
— Can Be Forced by the General-Purpose Fuses

— Read/Write Flash on-Chip Memories AVR®32 32-b|t
— Read Device ID]
— Full-Chip Erase Microcontroller

— Start Application Command

AVR UC3 A0, A1,
A3, B0, B1 USB
DFU Bootloader
up to version
1.0.3

7745C-AVR32-05/09

ATMEL

1. Description

2. Related Parts

3. Related Items

ATMEL

AVR UC3 devices with the USB feature are shipped with a USB bootloader.

This USB bootloader allows to perform In-System Programming (ISP) from a USB host control-
ler without removing the part from the system, without a pre-programmed application and
without any external programming interface other than USB.

There is one bootloader compiled for each AVR UC3 serie. The hardware 1/0O conditions used to
request the start of the ISP are also specific to each serie.

This document describes the USB bootloader functionalities and its usage in various contexts.

This documentation applies to the following AVR UC3 parts:
+ AT32UC3A0512

+ AT32UC3A0256

« AT32UC3A0128

+ AT32UC3A1512

+ AT32UC3A1256

+ AT32UC3A1128

+ AT32UC3A3256

+ AT32UC3A3256S
+ AT32UC3A3128

+ AT32UC3A3128S
« AT32UC3A364

+ AT32UC3A364S
+ AT32UC3B0512

+ AT32UC3B0256

+ AT32UC3B0128

+ AT32UC3B064

+ AT32UC3B1512

+ AT32UC3B1256

+ AT32UC3B1128

+ AT32UC3B164

Note: This is the list of AVR UC3 devices shipped with the pre-programmed USB DFU Bootloader
version 1.0.z. For an accurate Bootloader version per AVR UC3 devices overview, refer to
the table Pre-programmed Bootloader Versions in AVR UC3 Devices in section 8.2.

The bootloader is compiled for each AVR UC3 A0, A1, A3, BO, B1 series because of differences
in the MCU peripheral memory map. The functionalities are the same between all series.

*+ AVR UC3 A0,A1 Series Datasheet:
http://www.atmel.com/dyn/resources/prod documents/doc32058.pdf

+ AVR UC3 B0,B1 Series Datasheet:
http://www.atmel.com/dyn/resources/prod documents/doc32059.pdf

« AVR UC3 A3 Series Datasheet:

2 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

http://www.atmel.com/dyn/resources/prod documents/doc32072.pdf
* AVR32 UC3 Software Framework:

http://www.atmel.com/dyn/products/tools.asp?family 1d=682#soft
* FLIP 3:

http://www.atmel.com/dyn/products/tools card.asp?tool 1d=3886

 AVR32 Studio:

http://www.atmel.com/dyn/products/tools card.asp?tool id=4116

ATMEL ;

7745C-AVR32-05/09

4. Abbreviations

* ISP: In-System Programming

+ BOD: Brown-Out Detector

* USB: Universal Serial Bus

+ DFU: Device Firmware Upgrade

» avr32program: AVR UC3 Part Programmer for JTAGICE mkil|
» FLIP: Flexible In-System Programmer

5. Bootloader Environment

The bootloader manages the USB communication protocol and performs read/write operations
from/to the on-chip memories.

The bootloader is located at the beginning of the on-chip flash array where an area of up to 64
kB can be configured to be write-protected by the internal flash controller. The bootloader pro-
tected size must be at least the size of the bootloader. On AVR UC3, it is configured to 8 kB.

Figure 5-1. Physical Environment

(DFU Class

Flash

L Read/Write |Application section

in Boot section

BatchlISP is the PC tool that allows to program a part using the AVR UC3 USB DFU bootloader.
It is compatible with Windows and Linux. It is integrated into AVR32Studio thanks to a plugin.

Note that all GCC make files of the UC3 software framework have programming goals using
BatchISP.

4 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

6. Inner Workings

6.1 Memory Layout

An AVR UC3 part having the bootloader programmed resets as any other part at 80000000h.
Bootloader execution begins here. The bootloader first performs the boot process to know
whether it should start the USB DFU ISP or the application. If the tested conditions indicate that
the USB DFU ISP should be started, then execution continues in the bootloader area, i.e.
between 80000000h and 80002000h, else the bootloader launches the application at
80002000h.

The conditions tested by the boot process are configured by the general-purpose fuse bits
located outside of the MCU address space and by a 32-bit configuration word located at the end
of the flash User page.

Figure 6-1. AT32UC3A0512 Non-Volatile Memory Layout with USB DFU Bootloader

32-bit bootloader MCU Address Space
configuration word is
@ 808001FCh
|
User page is Flash User Page } 512 B 32 GBF;tguse
@ 80800000h
~
Free Flash Space \
P 504 kB 512-kB
Application Flash
Array
Application is)
@ 80002000h
Reset vector is Bootloader } 8kB j
@ 80000000h

6.2 Configuration

The bootloader has a configuration which determines the behavior of the boot process and of
the ISP. This configuration is non-volatile and is stored on the one hand in the 32 general-pur-
pose fuse bits and on the other hand in the flash User page (see Figure 6-1).

See the AVR UC3 datasheets referred to by Section 3 for further information about the general-
purpose fuse bits and the flash User page.

6.2.1 General-Purpose Fuse Bits
The AVR UC3 have 32 general-purpose fuse bits. When these bits are erased, they are at 1b.

The AVR UC3 devices are shipped with:

+ For AVR UC3 A0, A1: the general-purpose fuses set to FCO7FFFFh.
» For AVR UC3 A3: the general-purpose fuses set to FFF7FFFFh.

+ For AVR UC3 B0, B1: the general-purpose fuses set to FCO7FFFFh.

ATMEL ;

7745C-AVR32-05/09

ATMEL

i.e. BOD is enabled by the bootloader and the USB DFU ISP is forced.

Table 6-1. Functions of the General-Purpose Fuses

General-Purpose

Fuse Number Name Description

15:0 LOCK Flash region lock bits. There is one bit per flash
region. A value of 1 means the region is
unlocked.

16 EPFL External privileged fetch lock. It is used to

prevent the CPU from fetching instructions from
external memories when in privileged mode. A
value of 1 means the external privileged fetch is
unlocked.

19:17 BOOTPROT Used to set the size of the bootloader protected
area. See Table 6-2.

Be careful when setting these bits as reducing
the bootloader protected size will allow the
corruption or the destruction of the bootloader.
Note that a JTAGICE mkill is required to
reprogram the bootloader.

25:20 BODLEVEL Brown-out detector trigger level. The higher the
value, the higher the BOD threshold level.

DO NOT ACTIVATE THE BOD WITH A
THRESHOLD ABOVE THE POWER SUPPLY
VOLTAGE OR THE PART WILL BECOME

UNUSABLE.
26 BODHYST Enables the BOD hysteresis when at 1.
28:27 BODEN Hardware BOD enable state. See Table 6-3.
29 ISP_BOD_EN Tells the ISP to enable by software the BOD

when at 1. Not all values can be set when using
the ISP. See Table 6-3.

30 ISP_IO_COND _EN | When at 1, tells the boot process to use the ISP
configuration in the flash User page to determine
the I/O conditions to test to know which of the
USB DFU ISP and the application to start. See
Table 6-4.

Setting this bit to 0 allows the application to save
a GPIO pin and to free the last word of the User
page, but the ISP is then unreachable except if
the programmed application sets the
ISP_FORCE GP fuse bit to 1. This behavior can
be useful when extending Atmel’s bootloader
with an applicative bootloader (see Section

7.6.3.3).
31 ISP_FORCE When at 1, tells the boot process to start the
USB DFU ISP without testing any other
condition.
6 Flash and ISP specification m———

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

Note that the general-purpose fuse bits 29 to 31 are meaningless for the MCU hardware. They
are only interpreted by the bootloader and can be freely used by the application if the bootloader
is removed.

Table 6-2. Bootloader Area Specified by BOOTPROT

Pages
Protected
by
BOOTPROT | BOOTPROT | Size of Protected Memory
7 None 0 byte
6 0-1 1024 bytes
5 0-3 2048 bytes
4 0-7 4096 bytes
3 0-15 8192 bytes (default value used by the bootloader)
2 0-31 16384 bytes
1 0-63 32768 bytes
0 0-127 65536 bytes

Table 6-3. BOD Activation Settings
ISP_BOD_EN | BODEN

GP 29 GP 28 | GP 27 | Description
0 0 0 BOD disabled.
X 0 1 BOD enabled by hardware, BOD reset enabled.

DO NOT USE WITH THE ISP OR THE BOOT PROCESS
WILL BEHAVE ABNORMALLY BECAUSE OF
CORRUPTED RESET CAUSES.

0 1 0 BOD enabled by hardware, BOD reset replaced by BOD
interrupt.

0 1 1 BOD disabled.

1 X X BOD enabled with reset by the ISP using the BODLEVEL

and BODHYST settings from the GP fuses.

except 01b

The general-purpose fuse bits can be changed in one of the following ways:

i With JTAGICE mkll, use the avr32program writefuses command (see avr32program help
writefuses), Or execute ‘Program Fuses... on the JTAGICE mkll AVR32 target in AVR32
Studio.

+ With ISP, use the conricuraTTON Mmemory with BatchISP (see Section 7.4.2), or execute
‘Program Fuses...’ on the appropriate ISP AVR32 target in AVR32 Studio (see Section
7.5.2).

* From the running embedded application, use the WGPB, EGPB, PGPFB and EAGPF
FLASHC commands. See the AVR UC3 datasheets referred to by Section 3 for further
information and take care of the Lock errors that can occur with these commands.

ATMEL v

7745C-AVR32-05/09

ATMEL

6.2.2 Flash User Page

The bootloader uses the flash User page to store the I/O conditions that determine which of the
USB DFU ISP and the application to start at the end of the boot process.

Table 6-4. Bootloader Flash User Page Configuration Word

Last 32

Bits of the

Flash User

Page Name Description

7:0 ISP_CRC8 CRCS8 on the bootloader User page configuration

word with polynomial:

P(X) = XB+X2+X+1.

This CRC is used to check the validity of this
configuration word.

15:8 ISP_IO_COND_PIN The GPIO pin number to test during the boot
process to know which of the USB DFU ISP and the
application to start. E.g., to select PX16 (i.e. QFP144
pin 61 and the GPIO pin 88) on AT32UC3A0512,
this bit-field has to be set to 88.

Possible values are:

- 0 to 109 for AVR UC3 A0 QFP144;

- 0 to 69 for AVR UC3 A1 QFP100;

-0to 109 for AVR UC3 A3 QFP144 or BGA144
-0to 43 for AVR UC3 B0 QFP64;

- 0 to 27 for AVR UC3 B1 QFP48.

16 ISP_IO_COND_LEVEL | Active level of ISP_IO_COND_PIN that the
bootloader will consider as a request for starting the
USB DFU ISP: 0 for GPIO low level, 1 for GPIO high
level.

31:17 ISP_BOOT_KEY Boot key = 494Fh. This key is used to identify the
word as meaningful for the bootloader.

The default value of the bootloader flash User page configuration word is:
* 929E1424h for AVR UC3 AQ, A1,

+ 0x929E2A9E for AVR UC3 A3

« 929E0D6Bh for AVR UC3 B0, B1,

i.e. the ISP will be activated when

» the joystick is pressed on EVK1100 or EVK1101 at reset,

» the SW2 button is pressed on EVK1104 at reset.

Refer to section 7.3 “Customizing the ISP Configuration Word” to compute a value of the boot-

loader configuration word from a given set of ISP_IO_COND_PIN and ISP_IO_COND_LEVEL
values.

6.3 Boot Process

After reset, the boot process starts at 80000000h:

+ BOD is enabled with reset if the ISP_BOD_EN GP fuse bit is 1.

+ Ifthe ISP_FORCE GP fuse bit is 1, the USB DFU ISP is immediately started.
+ Ifthe ISP_FORCE GP fuse bit is 0:

8 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

— If external events (power-on reset, external reset, OCD reset, JTAG reset or JTAG
hardware reset) are among the reset causes, the boot process checks if the
ISP_IO_COND_EN GP fuse bit is 1, and if so it launches the USB DFU ISP or the
application according to the ISP I/O configuration specified by the User page. If
ISP_IO_COND_EN is 0, the application is launched.

— Else, if the watchdog timer (WDT) is one of the reset causes, the boot process
launches the application. The watchdog timer is not stopped if the application was
running before reset.

— Else, i.e. if an error (BOD or CPU error) is one of the reset causes, the boot process
launches the one that was running before reset among the USB DFU ISP and the
application.

ATMEL ;

7745C-AVR32-05/09

ATMEL

Figure 6-2. Boot Process

Reset Vector
@ 80000000h

Note:

ISP_BOD_EN is GP fuse bit 29.
ISP_IO_COND_EN is GP fuse bit 30.
ISP_FORCE is GP fuse bit 31.

ISP_BOD_EN=1?

‘Yes

‘ Enable BOD with reset ‘

No

ISP_IO_COND_EN=1?

WDT Reset

P User Page Cfg O
CRCS8, Boot Key, Pi

ISP 1/0 Condition Active? No

y
‘ Disable WDT ‘
I
‘ Set ISP RAM Key ‘
I
Bootloader

(@ 80000000h) |
ISP_FORCE=1 on DFU

No

Start Customer

Application? ‘ Disable WDT ‘
|
v Yes »‘ Clear ISP RAM Key ‘
|
‘ ISP_FORCE=0 ‘ ‘ SW Reset CPU Regs
o] G

Y
Yes Reset No Customer Application
' Requested? (@ 80002000h)
Note:

+ The ISP_FORCE GP fuse bit is set to 1 by the ISP on each ISP command received and it is
set to 0 by the ISP when a request to start the application is received. That means that after
a command has been sent using BatchlISP, the user will not be able to start his application
until he has issued a START operation to BatchlSP. This behavior ensures the consistency
of programmed data thanks to a non-volatile programming session.

Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

7745C-AVR32-05/09

If the ISP_FORCE GP fuse bit is 0 and the user has set the ISP_I0O_COND_EN GP fuse bit
to 0, the ISP will no longer be reachable, except if the programmed application sets the
ISP_FORCE GP fuse bit to 1.

If the ISP_IO_COND_EN GP fuse bit is 1, but the bootloader configuration word is corrupted
(wrong CRCS8) or has an invalid boot key or GPIO pin, the USB DFU ISP is systematically
launched to allow the user to correct this value.

Figure 6-2 mentions the ISP RAM key. It is a specific value written in the first word of the
INTRAM by the bootloader. This key is manipulated only by the boot process for its internal
behavior to know whether it is a warm boot following the execution of the USB DFU ISP. All
the user has to know about this key is that setting the first word of the INTRAM to
4953504Bh (“ISPK”) will alter the behavior of the bootloader after a subsequent reset, soitis
recommended that applications leave the first word of the INTRAM unused thanks to an
appropriate linker script (the C99 standard requires that a null pointer compares unequal to
a pointer to any object or function).

See the AVR UC3 datasheets referred to by Section 3 for a detailed description of the MCU
reset causes.

From the application point of view, if all the rules described in this document are followed, the
state of the MCU when the application begins to execute at 80002000h will be the same as after
the last MCU hardware reset that occurred (whatever its causes) except that:

The Cycle Counter system register will have counted a few cycles.
The Brown-Out Detector may be activated, according to Figure 6-2.

The Power Manager registers may indicate some activity for OscO or PLLO if the application
is launched from the ISP without reset.

The USB register bit-fields that are not reset when disabling the USB macro may not contain
their respective reset values if the application is launched from the ISP without reset.

ATMEL :

ATMEL

7. Using the Bootloader

7.1 Reprogramming the Bootloader

By default, all parts are shipped with the bootloader, so there is no need to program it, except if
it has been erased with the JTAGICE mkll using a JTAG Chip Erase command (avr32program
chiperase) Or if the user wants to program a previous version.

Any of the released bootloaders can be programmed with the part connected to a JTAGICE mkll
using its JTAG interface. The servVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3x/Releases/ folder
of the AVR UC3 software framework contains a subfolder for each released version of the ISP.
Each subfolder contains the released ISP in an at32uc3x-isp-x.x.x.hex file which can be pro-
grammed under a Linux or Cygwin shell using the program at32uc3x-isp-x.x.x.sh script. E.g., to
program the version 1.0.0 of the AVR UC3 AOQ, A1 ISP, simply execute . /program_at32uc3a-isp-
1.0.0.sh in the SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3A/Releases/AT32UC3A-ISP-1.0.0/
folder.

The steps performed by the programming scripts are (commands are given for the version 1.0.0

of the AVR UC3 A0,A1 ISP):

* Issue a JTAG Chip Erase command to make sure the part is unprotected and free to use:
avr32program chiperase

* Program the bootloader:
avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -00x80000000 -Fbin
at32uc3a-isp-1.0.0.bin

* Program the bootloader configuration word in the User page:
avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -00x808001FC -Fbin
at32uc3a-isp_cfg-1.0.0.bin

+ Write the general-purpose fuses with their default value used by the ISP:
avr32program writefuses -finternal@0x80000000,512Kb gp=0xFCO7FFFF

In order to work, the ISP requires that either an external clock or a crystal is mounted on OscO.
The supported frequencies are 8MHz, 12MHz and 16MHz. Osc1 can be used instead of OscO,
but in this case the user has to change the 1sp_osc preprocessor definition to 1 in ser-
VICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3x/GCC/config.mk for GCC or in the
SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3x/IAR/at32uc3x-isp.eww WOrkspace project
options for IAR. The user then has to recompile the bootloader and to program it with a
JTAGICE mkill using ‘make rebuild program run' for GCC and Iauching a project full rebuild for
IAR. In both cases, the AVR32 GNU ToolChain has to be installed.

7.2 Activating the ISP

12

The ISP is activated according to the boot process conditions described in Figure 6-2.

ISP activation can be requested in one of the following ways:

» External point of view: Reset the part and make sure the configured hardware conditions are
true when reset is released. By default, the hardware condition is to press the joystick on
EVK1100 and EVK1101, so the user simply has to maintain the joystick pressed while
releasing the reset push-button.

» Internal point of view: The programmed application can launch the ISP by setting the
ISP_FORCE general-purpose fuse bit to 1. The next execution of the reset vector will then
systematically launch the ISP. To launch the boot process from the application, the reset
vector should be reached by using the watchdog timer reset rather than a software jump or
call to 80000000h. In the latter case, unexpected behavior could occur because the MCU
reset causes are not updated and MCU peripherals may still be active.

Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

Once the ISP is activated, it establishes a USB connection with the connected PC. It may take a
few seconds because of the autobaud that is performed using the USB starts of frames to deter-
mine the frequency of the clock input on Osc0. Trying to communicate with the ISP before it is
detected by the PC OS as a USB device will fail.

7.3 Customizing the ISP Configuration Word

The purpose of this section is to propose a method to compute the ISP Configuration Word for a
given set of (ISP_IO_COND_PIN, ISP_IO_COND_LEVEL) values (Refer to section 6.2.2 “Flash
User Page” for a description of the ISP Configuration Word stored in Flash).

7.3.1 Step 1: Setting the ISP_BOOT_KEY Field

As mentionned in Table 6-4. the ISP_BOOT_KEY field must always be set to 0x494F at offset
17. At this step, the configuration word is always 0x929E**** (with bit 16 unset).

7.3.2 Step 2: Setting the ISP_IO_COND_LEVEL Field

As mentionned in Table 6-4. the ISP_IO_COND_LEVEL field is either high (1) or low (0) set at
bit 16 of the ISP configuration word.

For a high level condition, the ISP configuration word is always 0x929F****,

For a low level condition, the ISP configuration word is always 0x929E****,

7.3.3 Step 3: Setting the ISP_IO_COND_PIN Field

As mentionned in Table 6-4. the ISP_IO_COND_PIN field is placed at offset 8 of the ISP config-
uration word and contains the GPIO pin number the boot process will test.

As an example, we’ll use PX16 on AT32UC3A0512 (i.e. QFP144 pin 61 so GPIO pin 88 (i.e.
0x58 in hexadecimal representation) and assume a high level condition (cf step 2): the ISP con-
figuration word is then 0x929F58**,

7.3.4 Step 4: Setting the ISP_CRCS Field

As mentionned in Table 6-4. the ISP_CRCS8 value is the CRC of the three other Bytes of the ISP
configuration word.

Using the example from step 3, the CRC8 of 0x929F58 is 0xD2. The ISP configuration word
should then be 0x929F58D2.

There are several methods to compute a CRC8 and several resources on the web available for
this purpose. For example, to use the java applet on the site
http://www.smbus.org/fag/crc8Applet.htm, fill in the “Enter hex-coded message...” field with
929F58, press the OK button, then read the “Frame Check Sequence...” field that contains the
CRC8 value (“Frame Check = 0xd2”).

7.3.5 Step 5: Program the Configuration Word in the User Page

7.3.5.1 Using avr32program

7745C-AVR32-05/09

» Create a binary file made of one 32bit word with the value 0x929F58D2; name that binary
file e.g. isp_mycfg.bin

* Issue the following command through a hardware debugger (such as the JTAG-ICE mkll or
the AVR ONE!):

avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -00x808001FC -Fbin
isp mycfg.bin

ATMEL 1

ATMEL

7.3.5.2 Using batchisp

The bootloader must previously be programmed and activated.

» For each Byte of the ISP configuration word, issue the following commands (using the
computed ISP configuration word from step 4 (0x929F58D2)):
batchisp -device at32uc3a0512 -hardware usb -operation erase f memory user addrange

0x1FC Ox1FC fillbuffer 0x92 program

batchisp -device at32uc3al0512 -hardware usb -operation erase f memory user addrange
0x1FD Ox1FD fillbuffer 0x9F program

batchisp -device at32uc3al0512 -hardware usb -operation erase f memory user addrange
0x1FE O0x1FE fillbuffer 0x58 program

batchisp -device at32uc3a0512 -hardware usb -operation erase f memory user addrange
0x1FF O0x1FF fillbuffer 0xD2 program

7.4 BatchISP

BatchISP is a command line tool that allows to program parts containing an embedded Atmel
ISP. It comes with FLIP 3. See Section 3 for download information.

7.4.1 Installation

To install BatchlISP, first install FLIP 3 using its installer, then connect a part to the PC using a
USB cable and activate the ISP as described in Section 7.2. For instance, with the default con-
figuration on EVK1100 or EVK1101, press the reset push-button, then maintain the joystick
pressed while releasing the reset push-button. This will open a new hardware installation win-
dow. Choose not to connect to Windows Update for this installation and click ‘Next’:

Found Mew Hardware Wizard

Welcome to the Found New
% Hardware Wizard
Windows will zearch for current and updated software by

looking on vour computer, on the hardware ingtallation CD, or on
the Windows pdate Web site [with your permizsion].

Read our privacy policy

Can'windows connect toWindows Update to search for

software?
() Yes. this time only
O d every time | connect a device

Click Meust to continue,

Meut > l [Cancel

14 Flash and ISP specification m——

7745C-AVR32-05/09

7745C-AVR32-05/09

Flash and ISP specification

On the next screen, select “Install from a list or specific location (Advanced)” and click ‘Next'”:

Found Mew Hardware Wizard

%

Thiz wizard helpsz you inztall software for;

AT3I20C34

3;_') If your hardware came with an installation CD
= or floppy disk. insert it now.

what do you want the wizard to do?

() Install the software automatically (Recommended)

(& install fram a st or speciiic lacation [Advanced)

Click Mest to continue.

[¢ Back][Meut » l[Cancel]

Then request to search in the usb folder of the FLIP installation directory as shown below and

click ‘Next’:

Found Mew Hardware Wizard

Please choose your search and installation options.

() Search for the best diiver in these locations.

Uze the check boxes below to limit or expand the default zearch, which includes local
paths and removable media. The best driver found will be installed.

[15earch remavable media [floppy, CO-ROM...]

Include thiz location in the search:
C:\Program Files\Atmel\Flip 3.2.0bwst] v

() Don't search. | will choose the: driver to install,

Chooze this option to select the device driver from a list. *Windows does not guarantee that
the driver you chooze will be the best match for pour hardware.

¢ Back][Mext » l[Cancel

ATMEL 1

7.4.2 Usage

ATMEL

Windows will then process the installation of the driver corresponding to the ISP of the con-
nected part. Once completed, click ‘Finish’:

Found Mew Hardware Wizard

Completing the Found New
% Hardware Wizard
~§

The wizard haz finished ingtaling the software far;

ATI2UC38
o

Click. Finizh to cloze the wizard.

This installation has to be done for each new part family to use. E.g., using an AT32UC3A0512
then an AT32UC3A0256 will not require a new installation, but then connecting an
AT32UC3B0256 will.

To launch BatchISP, open a command prompt. Windows or Cygwin command prompt can be
used provided that the nin folder of the FLIP installation directory is in the pata (Windows’ or
Cygwin’s) environment variable.

When running BatchISP on AT32UC3xxxxx, the target part has to be specified with -device
at32uc3xxxxx and the communication port with -hardware usb. Commands can then be placed
after -operation. These commands are executed in order. BatchISP options can be placed in a
text file invoked using -cmdfi1e rather than on the command line.

BatchISP works with an internal ISP buffer per target memory. These ISP buffers can be filled
from several sources. All target operations (program, verify, read) are performed using these
buffers.

A typical BatchISP command line programming an application will look like this:
batchisp -device at32uc3a0512 -hardware usb -operation erase f memory flash
blankcheck loadbuffer uc3al5l2-usart example.elf program verify start reset 0

16 Flash and ISP specification m———

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

Figure 7-1. Typical BatchISP Command Line

% hatchisp —device at32uc3a®512 —hardware ush —operation erase F memory Flash b
lankcheck loadbuffer uc3aB512—usart_example.elf program verify start reset @
Running batchisp 1.1.8 on Wed Jun 28 28:51:1% 2887

AT32UC3AB512 — USB - USB-DFU

Device szelection
Hardware szelection.
Opening port

Reading Bootloader version
Erasing

Selecting FLASH.
Blank checking..
Parzing ELF file.
HARNING: The user
Programming memory.
Verifying memory
Starting Application

1.8.8

BxARERB Bx?FEFF
ucdals12—usart_example.elf

» overlap?
BxA0HAE Bx@2ca?
BxABHAE BxB2ca?

RESET a

fn=Ra-Ra-N - Ra =l =R Ra =Ny - sl -]

Summary: Total 11 Pazsed 11

For each operation, BatchISP displays the result.

BatchlSP main commands available on AT32UC3xxxxx are:

* asserT { pass | FAIL } changes the displayed results of the following operations according
to the expected behavior.

* ONFAIL { ASK | ABORT | RETRY | IGNORE } changes the interactive behavior of BatchISP in
case of failure.

* WAIT <Nsec> inserts a pause between two ISP operations.
* ECHO <comment> displays a message.
* ERASE F erases internal flash contents, except the bootloader.

* MEMORY { FLASH | SECURITY | CONFIGURATION | BOOTLOADER | SIGNATURE | USER }Selectsa
target memory on which to apply the following operations.

* ADDRANGE <addrMin> <addrMax> Selects in the current target memory an address range on
which to apply the following operations.

* BrankcHECK checks that the selected address range is erased.

* FILLBUFFER <data> fills the ISP buffer with a byte value.

* LOADBUFFER { <in elffile> | <in_hexfile> } loads the ISP buffer from an input file.

* prOGRAM programs the selected address range with the ISP buffer.

+ veriry verifies that the selected address range has the same contents as the ISP buffer.

» reaD reads the selected address range to the ISP buffer.

* SAVEBUFFER <out hexfile> { HEX386 | HEX86 } Saves the ISP buffer to an output file.

* START { RESET | NORESET } 0 starts the execution of the programmed application with an
optional hardware reset of the target.

The AT32UC3xxxxx memories made available by BatchISP are:

» rLasH: This memory is the internal flash array of the target, including the bootloader
protected area. E.g. on AT32UC3A0512 (512-kB internal flash), addresses from 0 to
0x7FFFF can be accessed in this memory.

» securITY: This memory contains only one byte. The least significant bit of this byte reflects
the value of the target Security bit which can only be set to 1. Once set, the only accepted
commands will be erase and start. After an erase command, all commands are accepted
until the end of the non-volatile ISP session, even if the Security bit is set.

* conrIGURATION: This memory contains one byte per target general-purpose fuse bit. The
least significant bit of each byte reflects the value of the corresponding GP fuse bit.

ATMEL L

7745C-AVR32-05/09

7.5 AVR32 Studio

ATMEL

* BOOTLOADER: This memory contains three bytes concerning the ISP: the ISP version in BCD
format without the major version number (always 1), the ISP IDO and the ISP ID1.

* sIGNATURE: This memory contains four bytes concerning the part: the product manufacturer
ID, the product family ID, the product ID and the product revision.

» user: This memory is the internal flash User page of the target, with addresses from 0 to
Ox1FF.

For further details about BatchISP commands, launch bvatchisp -h or see the help files installed
with FLIP (file:///C:\Program%20Files\Atmel\F1ip%203.2.0\help\index.htm).

AVR32 Studio is an integrated development environment for AVR32. It integrates a plugin giving
access to BatchISP features. See Section 3 for download information.

7.5.1 Creating an AVR32 Target for BatchISP

18

In order to use the BatchISP plugin, an AVR32 target has to be created and configured for each
part to use.

Launch AVR32 Studio and go to the ‘AVR32 Targets’ pane:

[© A3z CrC-+ - AVR32 Studio =3
Fle Edt Mavigate Search Run Project Window Help
. b EHTE [ET w0 Q@ < [ERs [| Bl wvR32 CJCH+
B Cfc+ Prajects 51 Navigator = = O | outine | 2 avRsz Regsters 22 =o
B & Find: v| <amaus
L iAPPLICATIONS_PROJECT] Register address Description
=i DRIVERS_PROJECT
* (i BOARDS
- (G DRIVERS
(i UTILS
L SERVICES_PROJECT
< >
Register Address value Previous
< 5
s AVR3Z Targets £1 - -0

Name Adapter Board (et}

[Properties 5 Console v =g

Properties are not avalable.

Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

In this pane, click the ‘Create New Target’ button:

A5 AYR32 Targets 03 E": 8
M

Marne Adapter Board
Creates a new target

A new AVR32 target will appear in this pane and its properties will be displayed in the ‘Proper-
ties’ pane where it can be renamed (In General tab). Go in the Details tab in the Properties pane
and select USB DFU for Debugger/Programmer, select also your part for Microcontroller:

e ANREZ Targets 52

« — 0
Marne Adapker Board MCU
45 AVR ONE! ANR OMNE! Unspecified
A AVRIZ Simulator ANRIZ Simulatar AWR3Z Simulakar LhZ3a0512
8 ITAGICE mkil ITAGICE mkIl EYE1100 UZ3a0512
lad ek LISE DU EvK1100 UC3ADS1Z
I"_ Problems | =] Properties 22 El cansole i
Gd evk
General Debuggerfprogrammer: |LISB DFU .v]
Details Microcontrollet: UC3a0512 Select..]
Daisy Chain
Information | Chock source: Crystal connected bo OSCO]
Board: EVK1100 el
= Conneckion
This adapter dogs not have any connections,
* Clock @.
This programmer/debugoer does not have controllable clocks,
= Yoltage el

This debuggerfprogrammer does not have controllable volbage lines.

The BatchlSP AVR32 target is now ready to use.

ATMEL 1

7745C-AVR32-05/09

ATMEL

7.5.2 Usage

To issue a command to BatchlISP, right-click in the ‘AVR32 Targets’ pane the AVR32 target to
use and select a command:

#' AYRSZ Targets 52

Marne Adapter Board MCU
&= AVR ONE! AYR ONE! Unspecified
M AVREZ Simulabor AYR3E Simulator AYRSEE Simulabor UCSA0S1Z2
Bl ITAGICE mkIl JTAGICE mkII EVE1100 UC3A0512
Hﬂ ek USE DEL EWE1100 HE3AN51 2 |
|% Praograri... |
i Read..,
) Verify.
.ﬁ.“ Erase
Read fuses...

Program Fuses...

Set as Default
Remove Delete
Froperties Enter

7.6 UC3 Software Framework

7.6.1 Memory Layout

All GCC and IAR projects in the AVR UC3 software framework are set up so that they can be
programmed with both JTAGICE mkll and BatchlSP. To achieve this, a trampoline section is

placed at the reset vector (80000000h). This section simply jumps to the beginning of the appli-
cation (80002000h).

To program an application with JTAGICE mkll, the MCU flash array must first be unprotected
and erased, so the bootloader should be removed. When programming, the whole binary image
including the trampoline and the application, is copied to the flash array. Consequently, when
MCU execution is then started, the trampoline executes at the reset vector at 80000000h and
jumps to the application at 80002000h.

20 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

Figure 7-2. Application Programming on AT32UC3A0512 with JTAGICE mkII

MCU Address
Space
without
Bootloader

Binary Image of
Application Linked Free Flash Space \ \
with Trampoline

504K | 5iap

Application —— Application Flash
Array

Application is Y.
@ 80002000h >

Jump Jump
Reset vector is Trampoline — Trampoline 8 kB /
@ 80000000h >

To program an application with BatchlSP, the MCU flash array must contain the bootloader.
When programming, BatchISP takes into consideration the whole binary image including the
trampoline and the application, but the trampoline cannot overwrite the bootloader, so the tram-
poline is not programmed and a warning is issued by BatchISP to tell the user that the binary
image may contain an application linked directly at the reset vector without trampoline. Conse-
quently, when MCU execution is then started, the bootloader executes at the reset vector at
80000000h and launches the application at 80002000h when the required conditions are met.

Figure 7-3. Application Programming on AT32UC3A0512 with BatchISP

MCU Address
Space
with Bootloader

Binary Image of <
Application Linked Free Flash Space \
with Trampoline
> 504 kB 512-kB
Application — Application > Flash
Array
Application is W,
@ 80002000h %o
Reset vector is Trampoline —x Bootloader } 8 kB)
@ 80000000h >

ATMEL 2

7745C-AVR32-05/09

ATMEL

7.6.2 Usage

To use JTAGICE mkll (without bootloader), first unprotect and erase the MCU flash array with
avr32program chiperase if needed. Then, an application can be programmed and run by issuing
make program run for a GCC project and by starting a debug session for an IAR project.

An application can be programmed and run with BatchISP (with bootloader) by issuing make isp
program run for a GCC project. As to IAR projects, which are configured to use JTAGICE mkll by
default, rebuild all after having set the following post-build command line in the project options
(replace at32uc3a0512 by the appropriate part name):

batchisp -device at32uc3al0512 -hardware usb -operation erase f memory flash
blankcheck loadbuffer STARGET BPATHS.hex program verify start reset 0

Options for node "usart_example™
Categary:
General Cptions
CJC++ Compiler Build Actions Configuration
Assembler ;)
lavato C Pre-build command ine;

Custorn Build | J

B.u“d GERENS Piost-build command line:
Linker |heck loadbuffer $TARGET_EPATHE hes program werify start reset 0 J
Debugger

ITAGICE mkIl

Simulakar

Ok | Cancel

22 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

This requires the generation of an Intel HEX extra output file:

Options for node "usart_example"

Category: Factory Settings

General Options

C/C++ Compiler Output Extra Output lﬂdefine] Diagnnstic&] Ligt] Ennfig] F'rcu:eLlLl
Assembler i
Javato C v Generate extra output file
Custom Build Cutput file
Build Actions v Owerride default
Linker
|usart_e>:am|:ule.he>:
Debugger
JTAGICE mkIl Format
Simulakar
Output format: |intel-e:-:tended ﬂ
Farmat wanant: |Nnne ﬂ

QK | Cancel

Once an application has been programmed using BatchISP, it can still be debugged with
JTAGICE mkll in the usual way. This is especially interesting for large applications because

ATMEL 2

7745C-AVR32-05/09

ATMEL

BatchISP programs faster than JTAGICE mkll. Under IAR, this will require to suppress JTAGICE
mkll download in the project options:

Options for node "usart_example"

Category: Factory Settings

General Options

T4+ Comnpiler Setup | Flash Loader]
Assembler)
Tawa ko Download control Connection
Custam Build 3 é Part; IUSE -
Build Actions . Iﬁ
Linker I %erify download
Debugger
ITAGICE mkil [~ Bun peripherals in stopped mode JTAG port
Simnulat E : [100krz =]
mHEker I Hardware reset on C-SPY reset Erequency: |100 KHz =

- Target device iz part

I Enable software breakpoints of JTAG daiey chain

Log communication

I Enable lngging l— l—
| | | e =
Ok | Cahcel ‘

In this case, if IAR project options request JTAGICE mkll download verification, an expected
warning will be issued by IAR because it will see the bootloader in the part at the location of the
trampoline in the binary image.

7.6.3 Project Customization

7.6.3.1 Adding or Removing the Trampoline

To add the trampoline to a GCC project, do the following in config.mk:

* Add $ (SERV_PATH) /USB/CLASS/DFU/EXAMPLES/ISP/BOOT/trampoline.s to the assrcs assembler
source files.

» Select the appropriate linker script from s (uT11_PATH) /LINKER_SCRIPTS/ With LINKER SCRIPT.
» Set the program entry pointto trampoline by adding -w1,-e, trampoline tO LD EXTRA FLAGS.

To add the trampoline to an IAR project, do the following:
* Add sERVICES\USB\CLASS\DFU\EXAMPLES\TSP\BOOT\trampoline.s82 t0 the project files.
» Select the appropriate linker script from urins\r1nkER_scripTS\ in the project options.

24 Flash and ISP specification m———
7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

» Set the program entry label to _ trampoline in the project options.

Options for node "usart_example"

Category: Factory Settings

General Options

CC++ Compiler Dutput] Extra Dutput] th:lefine] Diagnnstic&] List Config l F'rcu:eLlLl
Assembler Lirker command file
Jawva ko C B B
W :

Custom Build v
Ewild &ctions |$F'F|D.J_DIF|$’\..'\..'\..'\..'\..'\UTILS’\LINKEH_SEHIPTS"-AT32UE J
Linker
Debugger Iv Override default programm entry

JTAGICE mkIl {* Entm label |_tram|:u:|ine

Simulator (" Defined by application

Search paths: [one per ling]
$TOOLKIT_DIR$ALIBS

B aw binary image
File: Symbal: Segment: Align:

|] N

QK ‘ Cancel ‘

The trampoline can be removed from a GCC or IAR project to reallocate the size of the boot-
loader for the application. This can be achieved by removing the trampoline assembler source
file from the project and by removing the program entry point override.

7.6.3.2 Adding or Removing the Bootloader Binary Image

It is possible to include the binary image of the bootloader in any GCC or IAR project. This may
especially be useful for debug purposes when using JTAGICE mklI.

To add the bootloader binary image to a GCC project, do the following in config.mk:

* Add s (sErv_PATH) /USB/CLASS/DFU/EXAMPLES/ISP/B00T/ t0 the 1nc_paTH include path.

* Add s (serv_PATH) /USB/CLASS/DFU/EXAMPLES/ISP/BOOT/isp. S 10 the assrcs assembler source
files.

» Select the appropriate linker script from s (uTIL_PATH) /LINKER SCRIPTS/ With LINKER SCRIPT.
» Set the program entry pointto _isp by adding -w1,-e, isp t0 LD EXTRA FLAGS.

To add the bootloader binary image to an IAR project, do the following:

* Add sErRVICES\USB\CLASS\DFU\EXAMPLES\TSP\BOOT\isp.s82 to the project files.

» Select the appropriate linker script from vrr1s\11nkER _SscrIPTS\ in the project options.

ATMEL 2

7745C-AVR32-05/09

ATMEL

+ Set the program entry label to __isp in the project options.

Options for node "usart_example"

Category: Factory Settings

General Options

C/C++ Compiler Dutput] Extra Dutput] th:lefine] Diagnnstic&] List Config l Proce 41 *
fssemnbler
lavato C Linker commatd fil=
Custom Build ;
Build Actions =
Linker |$F'F|D.J_DIF|$'\..'\..'\..'\..'\..'\UTILS‘\LINKEH_SEHIF‘TS\.&T32UE J
Debugger
JTAGICE rkII v Overide default program entry
Simulator ¢ Entylabel | _isp

(" Defined by application
Search paths: [one per ling]
$TOOLKIT_DIR$ALIBS

B aw binary image
File: Sumbal: Segment: Align;

| =] |

QK | Cancel ‘

To remove the bootloader binary image from a GCC or IAR project, remove the isp assembler
source file from the project and remove the program entry point override.

Note that the bootloader binary image added to a project by the isp assembler source file is ser-
VICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3X/GCC/at32uc3x-isp.bin for GCC and
SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3X\IAR\at32uc3x-isp.h for IAR. These are by
default the most up-to-date releases of the bootloader, the bootloader shipped with the parts
being the GCC version. However, the user may apply his own changes to the bootloader
sources in the servicEs/use/cLass/pru/ExaMpLES/1sp/ folder, then recompile it using GCC or
IAR and program it as any other project with JTAGICE mkll. These changes will be automatically
applied to the bootloader binary image used for IAR projects, but servIcES/USB/CLASS/DFU/EXAM-
PLES/ISP/AT32UC3X/GCC/uc3xxxxx-isp.bin Will have to be renamed or copied manually to
SERVICES/USB/CLASS/DFU/EXAMPLES/ISP/AT32UC3X/GCC/at32uc3x-isp.bin for GCC projects for
safety.

7.6.3.3 Extending the Bootloader

An application can integrate its own bootloader by enlarging the bootloader protected area spec-
ified by the BOOTPROT general-purpose fuse bits (see Section 6.2.1). In this case, Atmel’s
bootloader will launch the application as usual at 80002000h where the applicative bootloader
should be located. The applicative bootloader is responsible for the following operations.

Once Atmel’s ISP has been used to program the application and its bootloader, it can be deacti-
vated by setting the ISP_IO_COND_EN general-purpose fuse bit to 0 (see Section 6.2.1) if it is
no longer needed.

26 Flash and ISP specification m—————

7745C-AVR32-05/09

Eesssssss—es——es—essssssssss—— Flash and ISP specification

7745C-AVR32-05/09

Figure 7-4. Extension of the Bootloader on AT32UC3A0512

Application is
@ 80002000h

Reset vector is
@ 80000000h

MCU Address Space

Free Flash Space

Application

Applicative Bootloader

Atmel's Bootloader

ATMEL

512-kB
Flash
Array

27

8. Software Information

8.1 Software Revision History

8.1.1 Version 1.0.3 - 2009/04/08

8.1.2 Version 1.0.2 - 2008/02/28

8.1.3 Version 1.0.1 - 2007/12/17

8.1.4 Version 1.0.0 - 2007/06/07

* Implements a more robust frequency detection algorithm and supports 8, 12 and
16MHz crystals.

Supported Devices:

+ AVR UC3 AO0,A1 rev. H and higher

* AVR UC3 A3 rev. E and higher

+ AVR32 UC3 B0,B1 rev. F and higher

Known Bugs and Limitations: None.

* A workaround for the device erratum titled "'On AT32UC3A0512 and
AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP
commands may happen' has been implemented.

Supported Devices:

+ AVR UC3 A0, A1 rev. H and higher

* AVRUC3A3revD.

« AVR UC3 BO0,B1 rev. F and higher

Known Bugs and Limitations: on AVR UC3 A3 devices, USB enumeration might fail.

» This version is only a port of version 1.0.0 to AT32UC3A rev. H and AT32UC3B rev.
F.

Supported Devices:

+ AT32UC3A0/1 rev. H, I and J.

« AT32UC3Brev. F.

Known Bugs and Limitations: The device erratum titled *On AT32UC3A0512 and
AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP com-
mands may happen' is not managed. This can make DFU programming hang up on
these devices.

First release.

Supported Devices:
+ AVRUC3AO, A1rev. E.
« AVR UC3 B0, B1 rev. B.

Known Bugs and Limitations:The device erratum titled "On AT32UC3A0512 and
AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP com-

mands may happen' is not managed. This can make DFU programming hang up on
these devices.

8.2 Pre-Programmed Bootloader Version in AVR UC3 Devices

Table 8-1 summarizes the pre-programmed bootloader versions 1.0.z in all AVR UC3
devices to date.

Table 8-1. Pre-programmed Bootloader Versions in AVR UC3 devices

Bootloader Versions
1.0.0 | 1.0.1 | 1.0.2 | 1.0.3

Supported UC3 A0/1 revE X
3!3;23 UC3 A0/1 revH . y
& higher

UC3 B0/1 revB X
UC3 B0/1 revF

& higher X X

UC3 A3 revD X

UC3 A3 revE X
& higher

8.3 Software Legal Information

Copyright (c) 2009 Atmel Corporation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The name of ATMEL may not be used to endorse or promote products derived from
this software without specific prior written permission.

4. ATMEL grants developer a non-exclusive, limited license to use the Software as a
development platform solely in connection with an Atmel AVR product ("Atmel
Product").

THIS SOFTWARE IS PROVIDED BY ATMEL ""AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO
EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE

Eesssssss—es——es—essssssssss—— Flash and ISP specification

9. Frequently Asked Questions

7745C-AVR32-05/09

Q: How do | reprogram the bootloader to the original program and fuse settings?

A: Connect your board to your PC using a JTAGICE mkll and execute
./program_at32uc3x-isp-1.x.x.sh iN the SERVICES/USB/CLASS/DFU/EXAM-
PLES/ISP/AT32UC3X/Releases/AT32UC3x-1sP-1.x.x/ folder of the UC3 software
framework corresponding to your part. See Section 7.1 for further details.

Q: | want to program my own bootloader. How do | do that?

A: You can either replace Atmel’s bootloader with your own by changing the bootloader
sources in the srrvIcES/USB/CLASS/DFU/ExAMPLES/ ISP/ folder and programming it with
JTAGICE mkll or you can extend Atmel’s bootloader with your own by enlarging the
bootloader protected area specified by the BOOTPROT general-purpose fuse bits. See
Section 7.6.3.2 and Section 7.6.3.3 for further details.

Q: | do not want to use the bootloader and | want to use the first 8 kB of the flash
for my application. How do | do that?

A: Remove the bootloader with JTAGICE mkll by unprotecting and erasing the MCU
flash array with avr32program chiperase. The trampoline should then be removed from
your project to free the first 8 kB of the flash. See Section 7.6.3.1 for further details.

Q: | do not want any ISP I/0 condition with my program. Can | still use the ISP?

A: ISP I/O conditions can be suppressed by setting the ISP_IO_COND_EN general-pur-
pose fuse bit to 0. The only way of reaching the ISP is then to set the ISP_FORCE
general-purpose fuse bit to 1 from the programmed application and to generate an MCU
hardware reset. See Section 6.2.1 and Section 7.2 for further details.

Q: | do not want to use the trampoline section from the software framework but |
still want to use the bootloader. Is it possible and where should | link my
application?

A: Remove the trampoline from your project by following the instructions in Section
7.6.3.1 and link your application as if the reset vector were at 80002000h instead of
80000000h. This can be achieved by modifying the linker script you use with GCC or
IAR. Your project will then be unusable with JTAGICE mkill.

ATMEL 2

ATMEL

10. User’s Guide Revision History

Please note that the referring page numbers in this section are referred to this docu-
ment. The referring revision in this section are referring to the document revision.

10.1 Rev. D 0110

1. Dedicate this bootloader 1.0.z user guide to AVR UC3 AQ, A1, A3, BO, B1
devices

2. Added the section 7.3 “Configuring the ISP Configuration Word” that proposes a
step-by-step method to compute and program to user page the ISP configuration
word

3. Added a table Pre-programmed Bootloader Versions in AVR UC3 Devices in the
Software Information section 8.

4. Applied the AVR UC3 naming conventions

10.2 Rev. C 0509
1. Update AVR32 Studio screenshot.

10.3 Rev. B 04/09
1. Update for AT32UC3A3 series.

10.4 Rev. A 07/07

1. Initial revision for bootloader 1.0.0.

32 Flash and ISP specification m———
7745C-AVR32-05/09

AIMEL

Y (5

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

Tel: (852) 2245-6100

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Fax: (33) 1-30-60-71-11

Product Contact

Sales Contact
www.atmel.com/contacts

Web Site Technical Support
www.atmel.com avr32@atmel.com

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR32 Studio® and others are registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

7745C-AVR32-05/09

	Features
	1. Description
	2. Related Parts
	3. Related Items
	4. Abbreviations
	5. Bootloader Environment
	6. Inner Workings
	6.1 Memory Layout
	6.2 Configuration
	6.2.1 General-Purpose Fuse Bits
	6.2.2 Flash User Page

	6.3 Boot Process

	7. Using the Bootloader
	7.1 Reprogramming the Bootloader
	7.2 Activating the ISP
	7.3 Customizing the ISP Configuration Word
	7.3.1 Step 1: Setting the ISP_BOOT_KEY Field
	7.3.2 Step 2: Setting the ISP_IO_COND_LEVEL Field
	7.3.3 Step 3: Setting the ISP_IO_COND_PIN Field
	7.3.4 Step 4: Setting the ISP_CRC8 Field
	7.3.5 Step 5: Program the Configuration Word in the User Page
	7.3.5.1 Using avr32program
	7.3.5.2 Using batchisp

	7.4 BatchISP
	7.4.1 Installation
	7.4.2 Usage

	7.5 AVR32 Studio
	7.5.1 Creating an AVR32 Target for BatchISP
	7.5.2 Usage

	7.6 UC3 Software Framework
	7.6.1 Memory Layout
	7.6.2 Usage
	7.6.3 Project Customization
	7.6.3.1 Adding or Removing the Trampoline
	7.6.3.2 Adding or Removing the Bootloader Binary Image
	7.6.3.3 Extending the Bootloader

	8. Software Information
	8.1 Software Revision History
	8.1.1 Version 1.0.3 - 2009/04/08
	8.1.2 Version 1.0.2 - 2008/02/28
	8.1.3 Version 1.0.1 - 2007/12/17
	8.1.4 Version 1.0.0 - 2007/06/07

	8.2 Pre-Programmed Bootloader Version in AVR UC3 Devices
	8.3 Software Legal Information

	9. Frequently Asked Questions
	10. User’s Guide Revision History
	10.1 Rev. D 0110
	10.2 Rev. C 0509
	10.3 Rev. B 04/09
	10.4 Rev. A 07/07

