SFH 4775S

SYNIOS® P2720

IR SYNIOS P2720 (940 nm) - 120°

Applications

CCTV Surveillance

- Eye Tracking

Features:

- Package: clear silicone

- Corrosion Robustness Class: 3B

- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)

- IR lightsource with high efficiency

- Double stack emitter

Low thermal resistance (Max. 9 K/W)

- Centroid wavelength 940 nm

Ordering Information

Туре	Total radiant flux ¹⁾ $I_{F} = 1000 \text{ mA; } t_{p} = 10 \text{ ms}$	Total radiant flux ¹⁾ typ. $I_F = 1000 \text{ mA}$; $t_p = 10 \text{ ms}$	Ordering Code	
	Фе	Фе		
SFH 4775S	900 1800 mW	1.150 mW	Q65112A7448	

Maximum Ratings

T_A = 25 °C

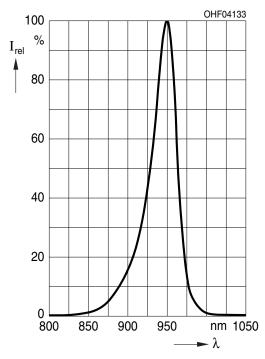
Parameter	Symbol		Values
Operating temperature	T _{op}	min.	-40 °C
		max.	100 °C
Storage temperature	T _{stg}	min.	-40 °C
	3.9	max.	100 °C
Junction temperature	T _j	max.	145 °C
Forward current	I _F	max.	1500 mA
Surge current	I _{FSM}	max.	3 A
$t_p \le 1.5 \text{ ms}; D = 0.005$			
Reverse current 2)	I _R	max.	200 mA
Power consumption	P _{tot}	max.	5800 mW
ESD withstand voltage	V_{ESD}	max.	2 kV
acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)			

For the forward current and power consumption please see "maximum permissible forward current" diagram

Characteristics

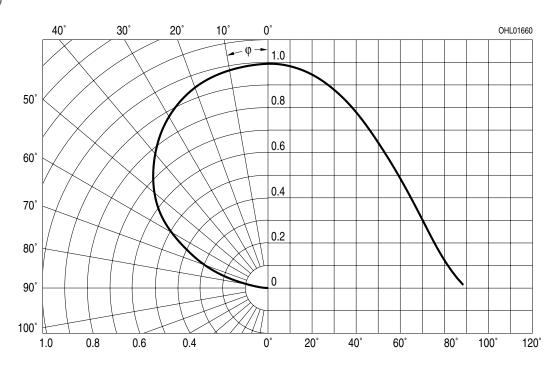
 $I_{\scriptscriptstyle F}$ = 1000 mA; $t_{\scriptscriptstyle p}$ = 10 ms; $T_{\scriptscriptstyle A}$ = 25 °C

Parameter	Symbol		Values
Peak wavelength	λ_{peak}	typ.	950 nm
Centroid wavelength	$\lambda_{ ext{centroid}}$	typ.	940 nm
Spectral bandwidth at 50% I _{rel,max}	Δλ	typ.	37 nm
Half angle	φ	typ.	60 °
Dimensions of active chip area	LxW	typ.	1 x 1 mm x mm
Rise time (10% / 90%) $I_F = 3 \text{ A}; R_L = 50 \Omega$	t _r	typ.	11 ns
Fall time (10% / 90%) $I_F = 3 \text{ A}; R_L = 50 \Omega$	t _f	typ.	14 ns
Forward voltage	V_{F}	typ. max.	2.8 V 3.6 V
Forward voltage $I_F = 1.5 \text{ A}; t_p = 100 \mu\text{s}$	V_{F}	typ. max.	2.95 V 3.85 V
Forward voltage $I_F = 3 \text{ A}; t_p = 100 \mu\text{s}$	V_{F}	typ. max.	3.3 V 4.7 V
Reverse voltage ²⁾ I _R = 20 mA	V_R	max.	1.2 V
Reverse voltage (ESD device) 2)	V_{RESD}	min.	5 V
Radiant intensity	l _e	typ.	360 mW/sr
Radiant intensity $I_F = 1.5 \text{ A}$; $t_p = 100 \mu\text{s}$	l _e	typ.	545 mW/sr
Total radiant flux ¹⁾ $I_F = 1.5 \text{ A}; t_p = 100 \mu\text{s}$	Фе	typ.	1720 mW
Temperature coefficient of voltage	TC _v	typ.	-2 mV / K
Temperature coefficient of brightness	TC,	typ.	-0.3 % / K
Temperature coefficient of wavelength	TC_{λ}	typ.	0.3 nm / K
Thermal resistance junction solder point real 3)	R_{thJS}	max.	9.0 K / W

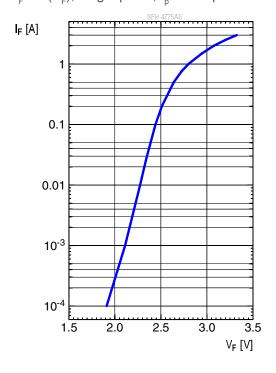

Brightness Groups

Group	Total radiant flux $^{1)}$ I _F = 1000 mA; t _p = 10 ms min. $\Phi_{\rm e}$	Total radiant flux $^{1)}$ I _F = 1000 mA; t _p = 10 ms max. Φ_{e}
EB2	900 mW	1250 mW
FA1	1000 mW	1400 mW
FA2	1120 mW	1600 mW
FB1	1250 mW	1800 mW

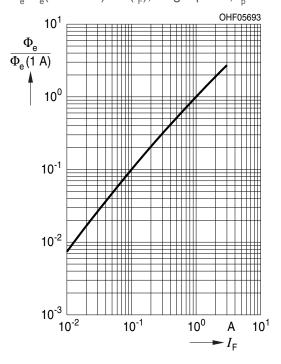
Only one group in one packing unit (variation lower 1.6:1).


Relative Spectral Emission 4), 5)

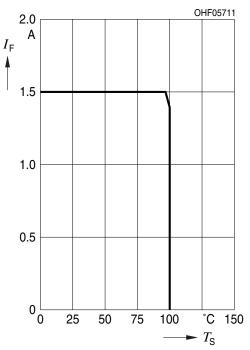
 $I_{e,rel} = f(\lambda); I_{F} = 1000 \text{ mA}; t_{p} = 10 \text{ ms}$


Radiation Characteristics 4), 5)

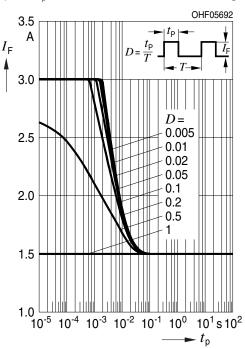
$$I_{_{e,rel}} = f(\phi)$$


Forward current 4), 5)

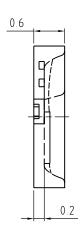
 $I_F = f(V_F)$; single pulse; $t_D = 100 \mu s$

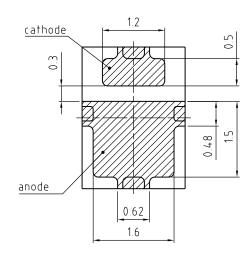

Relative Total Radiant Flux 4), 5)

 $\Phi_{\rm e}/\Phi_{\rm e}(1000{\rm mA})$ = f (I_F); single pulse; t_p = 100 $\mu {\rm s}$


Max. Permissible Forward Current

$$I_{F,max} = f(T_S); R_{thJS} = 9.0 K / W$$


Permissible Pulse Handling Capability


 $I_F = f(t_p)$; duty cycle D = parameter; $T_S = 85$ °C

Dimensional Drawing 6)

General tolerance ±0.1 Lead finish Au

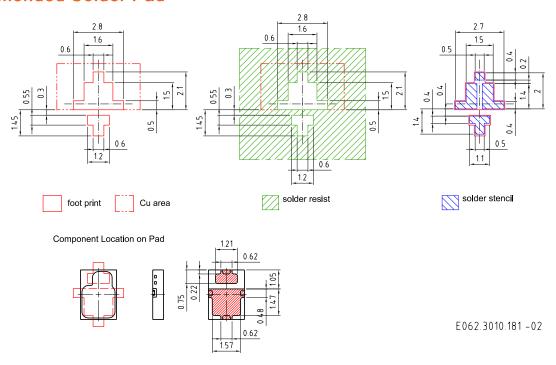
C67062-A0183-A1-02

Approximate Weight: 12.0 mg

Package marking: Cathode

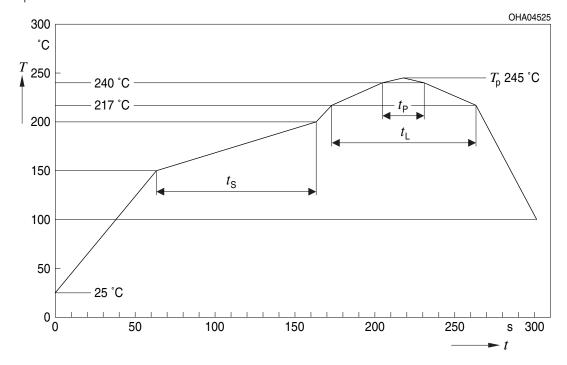
Corrosion test: Class: 3B

Test condition: 40°C / 90 % RH / 15 ppm H₂S / 14 days (stricter then IEC


60068-2-43)

ESD advice: The device is protected by ESD device which is connected in parallel to the

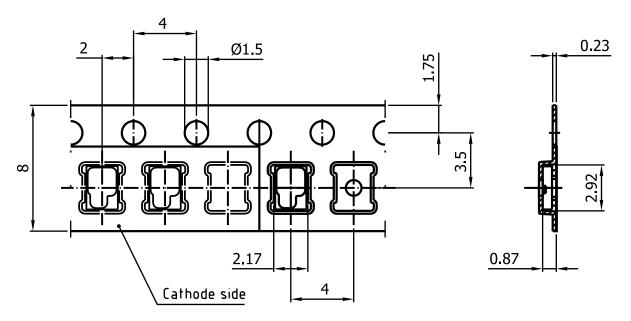
Chip.

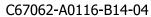


Recommended Solder Pad 6)

Reflow Soldering Profile

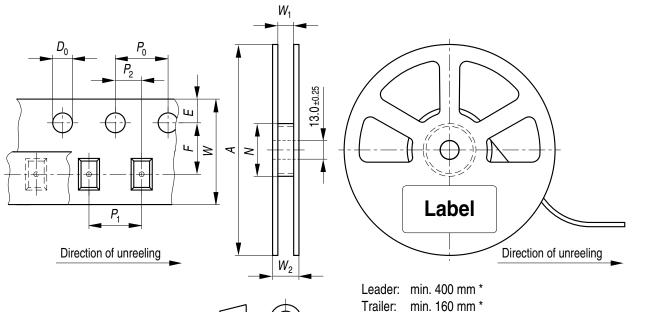
Product complies to MSL Level 2 acc. to JEDEC J-STD-020E




SFH 4775S

Profile Feature	Symbol	Pb	Pb-Free (SnAgCu) Assembly		
	·	Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _s	60	100	120	S
Ramp-up rate to peak*) T_{Smax} to T_{P}			2	3	K/s
Liquidus temperature	T_L		217		°C
Time above liquidus temperature	t _L		80	100	S
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	S
Ramp-down rate* T _p to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component * slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

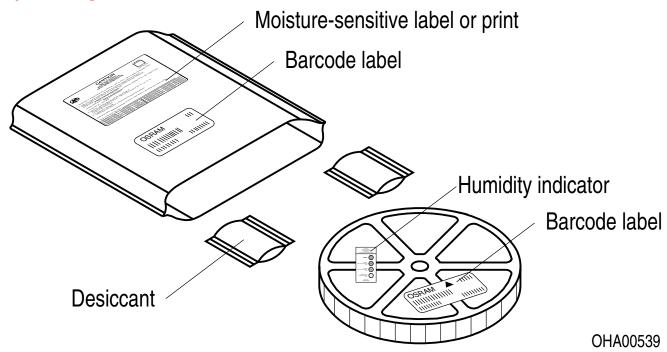

Taping 6)

Tape and Reel 7)

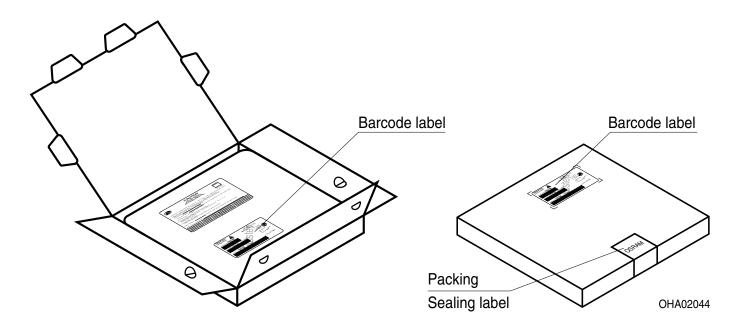
*) Dimensions acc. to IEC 60286-3; EIA 481-D

OHAY0324

Reel dimensions [mm]


Α	W	N_{min}	W_1	W_{2max}	Pieces per PU
180 mm	8 + 0.3 / - 0.1	60	8.4 + 2	14.4	2000

Barcode-Product-Label (BPL)


Dry Packing Process and Materials 6)

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

Transportation Packing and Materials 6)

Dimensions of transportation box in mm

Width	Length	Height
200 ± 5 mm	195 ± 5 mm	30 ± 5 mm

Notes

Depending on the mode of operation, these devices emit highly concentrated visible and non visible light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related informations please visit www.osram-os.com/appnotes

Disclaimer

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the OSRAM OS Webside.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

In case Buyer – or Customer supplied by Buyer– considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer.

Glossary

- Total radiant flux: Measured with integrating sphere.
- ²⁾ **Reverse Operation:** Reverse Operation of 10 hours is permissible in total. Continuous reverse operation is not allowed.
- Thermal resistance: junction soldering point, of the device only, mounted on an ideal heatsink (e.g. metal block)
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- ⁵⁾ **Testing temperature:** TA = 25°C
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- ⁷⁾ **Tape and Reel:** All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

