
Adafruit PiOLED - 128x32 Mini OLED for Raspberry Pi
Created by lady ada

Last updated on 2018-08-22 04:00:40 PM UTC

2
3
6
6
7
7
8
9

12
13
14
14
14

Guide Contents

Guide Contents
Overview
Usage
Step 1. Dependencies
Step 2. Enable i2c
Step 3. Verify I2C Device
Running Stats on Boot
Library Usage
More Demos & Examples
Speeding Up the Display
Downloads
Files
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 2 of 15

Overview

If you're looking for the most compact lil' display for a Raspberry Pi (https://adafru.it/wF8) (most likely a Pi
Zero (https://adafru.it/vIa)) project, this might be just the thing you need!

The Adafruit PiOLED is your little OLED pal, ready to snap onto any and all Raspberry Pi computers, to give you a little
display. The PiOLED comes with a monochrome 128x32 OLED, with sharp white pixels. The OLED uses only the I2C
pins so you have plenty of GPIO connections available for buttons, LEDs, sensors, etc. It's also nice and compact so it
will fit into any case.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 3 of 15

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813

These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This
screen is made of 128x32 individual white OLED pixels and because the display makes its own light, no backlight is
required. This reduces the power required to run the OLED and is why the display has such high contrast; we really
like this miniature display for its crispness!

Using the display is very easy, we have a Python library for the SSD1306 chipset. Our example code allows you to draw
images, text, whatever you like, using the Python imaging library. Our tests showed 30 FPS update rates so you can do
animations or simple video.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 4 of 15

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install our Python
code! Works with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 5 of 15

Usage
We'll be using Python to control the display. In theory you can use any language you like that gives you access to the
computer's I2C ports, but our library is for Python only!

Step 1. Dependencies

Before using the library you will need to make sure you have a few dependencies installed. Connect to your Pi using
SSH (https://adafru.it/vbC) and follow the steps below.

Install the RPi.GPIO library by running the following at the command line:

sudo apt-get update
sudo apt-get install build-essential python-dev python-pip
sudo pip install RPi.GPIO

Finally, install the Python Imaging Library (https://adafru.it/dvB) and smbus library by executing:

sudo apt-get install python-imaging python-smbus

Now to download and install the latest Adafruit SSD1306 python library code and examples, execute the following
commands:

sudo apt-get install git
git clone https://github.com/adafruit/Adafruit_Python_SSD1306.git (https://adafru.it/dEH)
cd Adafruit_Python_SSD1306
sudo python setup.py install

This guide assumes you have your Raspberry Pi all set up with an operating system, network connectivity and
SSH!

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 6 of 15

https://www.raspberrypi.org/documentation/remote-access/ssh/
http://effbot.org/imagingbook/pil-index.htm
https://github.com/adafruit/Adafruit_Python_SSD1306.git

Step 2. Enable i2c

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C support here. (https://adafru.it/dEO)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and log back in. Run the following
command from a terminal prompt to scan/detect the I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was found

Step 3. Verify I2C Device

While in the Adafruit_Python_SSD1306 folder, you can run our stats example, which will query the Pi for details on
CPU load, disk space, etc. and print it on the OLED.

Run sudo python examples/stats.py to run the demo, you should see something like the below:

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 7 of 15

file:///adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

Running Stats on Boot

You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/Adafruit_Python_SSD1306/examples/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 8 of 15

For more advanced usage, check out our linux system services guide (https://adafru.it/wFR)

Library Usage

Inside the examples subdirectory you'll find python scripts which demonstrate the usage of the library. These are
covered in more detail in our OLED guide here, so do check them out. (https://adafru.it/wF9)

To help you get started, I'll walk through the stats.py code below, that way you can use this file as the basis of a future
project.

First a few modules are imported, including the Adafruit_SSD1306 module which contains the OLED display driver
classes. You can also see some of the Python Imaging Library modules like Image, ImageDraw, and ImageFont being
imported. Those are, as you can imagine, are for drawing images, shapes and text/fonts!

import time

import Adafruit_GPIO.SPI as SPI
import Adafruit_SSD1306

from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont

import subprocess

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 9 of 15

file:///running-programs-automatically-on-your-tiny-computer/
file:///ssd1306-oled-displays-with-raspberry-pi-and-beaglebone-black/

Below the configuration values is the display class setup. There are 4 variants of OLED displays, with 128x32 pixels or
128x64 pixels, and with I2C or with SPI.

However since the PiOLED is a 128x32 I2C display only you should only use the

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

variant for creating the display object! The rest can remain commented out.

Note that above, we initialize RST = None because the PiOLED does not require a reset pin.

Raspberry Pi pin configuration:
RST = None
Note the following are only used with SPI:
DC = 23
SPI_PORT = 0
SPI_DEVICE = 0

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

128x64 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

Alternatively you can specify an explicit I2C bus number, for example
with the 128x32 display you would use:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, i2c_bus=2)

128x32 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=8000000))

128x64 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=8000000))

Alternatively you can specify a software SPI implementation by providing
digital GPIO pin numbers for all the required display pins. For example
on a Raspberry Pi with the 128x32 display you might use:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, sclk=18, din=25, cs=22)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 10 of 15

The next bit of code will initialize the display library with begin() and clear the display with clear() and display() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the image buffer is created in 1-
bit mode with the '1' parameter, this is important because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have to clear the screen again, but its a
good example of how to draw a shape!

Once the display is initialized and a drawing object is prepared, you can draw shapes, text and graphics using PIL's
drawing commands (https://adafru.it/dfH). Here we are loading the default font, which works fine, but there's other
fonts you can load.

Next the code loads a built-in default font and draws a few lines of text. You can also load your own TrueType font and
use it to render fancy text in any style you like

Initialize library.
disp.begin()

Clear display.
disp.clear()
disp.display()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0,0,width,height), outline=0, fill=0)

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font.
Some other nice fonts to try: http://www.dafont.com/bitmap.php
#font = ImageFont.truetype('Minecraftia.ttf', 8)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 11 of 15

http://effbot.org/imagingbook/imagedraw.htm

Using the subprocess class, python can utilize linux commands to access the Pi's system information. This
loop updates the screen at 10 times a second.

That's all there is to the stats.py code!

More Demos & Examples

You can check out our other examples in the example, just make sure to edit each one with nano animate.py for
example, and find the line that says:

and change it to:

and make sure that the configuration section where you choose which type of display, looks like this

while True:

 # Draw a black filled box to clear the image.
 draw.rectangle((0,0,width,height), outline=0, fill=0)

 # Shell scripts for system monitoring from here : https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load
 cmd = "hostname -I | cut -d\' \' -f1"
 IP = subprocess.check_output(cmd, shell = True)
 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell = True)
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%sMB %.2f%%\", $3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell = True)
 cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%dGB %s\", $3,$2,$5}'"
 Disk = subprocess.check_output(cmd, shell = True)

 # Write two lines of text.

 draw.text((x, top), "IP: " + str(IP), font=font, fill=255)
 draw.text((x, top+8), str(CPU), font=font, fill=255)
 draw.text((x, top+16), str(MemUsage), font=font, fill=255)
 draw.text((x, top+25), str(Disk), font=font, fill=255)

 # Display image.
 disp.image(image)
 disp.display()
 time.sleep(.1)

Raspberry Pi pin configuration:
RST = 24

Raspberry Pi pin configuration:
RST = None # PiOLED does not require reset pin

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 12 of 15

That is, we'll be using I2C 128x32 display!

Speeding Up the Display

For the best performance, especially if you are doing fast animations, you'll want to tweak the I2C core to run at 1MHz.
By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

reboot to 'set' the change.

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

128x64 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

128x32 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

128x64 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 13 of 15

Downloads
Files

EagleCAD PCB files on GitHub (https://adafru.it/wFa)
UG-2832HSWEG02 (https://adafru.it/qrf) Datasheet
SSD1306 (https://adafru.it/aJK) Datasheet
Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi Page 14 of 15

https://github.com/adafruit/Adafruit-PiOLED-128x32-PCB
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library/

© Adafruit Industries Last Updated: 2018-08-22 04:00:34 PM UTC Page 15 of 15

	Guide Contents
	Overview
	Usage
	Step 1. Dependencies
	Step 2. Enable i2c
	Step 3. Verify I2C Device
	Running Stats on Boot
	Library Usage
	More Demos & Examples
	Speeding Up the Display
	Downloads
	Files
	Schematic & Fabrication Print

