
Adafruit Feather M0 Express - Designed for CircuitPython
Created by lady ada

Last updated on 2018-12-13 04:59:12 PM UTC

2
9

12
12
13
14
14
15
16
16
19
19
20
20

22
22
23
24

26
26
27
27
28
29
30

32
32
32
34
35
36
36
37
37
39
39
39
39
40
41
41

Guide Contents

Guide Contents
Overview
Pinouts
Power Pins
Logic pins
SPI Flash and NeoPixel
Other Pins!
Debug Interface
Assembly
Header Options!
Soldering in Plain Headers

Prepare the header strip:
Add the breakout board:
And Solder!

Soldering on Female Header
Tape In Place
Flip & Tack Solder
And Solder!

Power Management
Battery + USB Power
Power supplies
Measuring Battery
ENable pin
Arduino IDE Setup

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

Using with Arduino IDE
Install SAMD Support
Install Adafruit SAMD
Install Drivers (Windows 7 & 8 Only)
Blink
Successful Upload
Compilation Issues
Manually bootloading
Ubuntu & Linux Issue Fix
Adapting Sketches to M0
Analog References
Pin Outputs & Pullups
Serial vs SerialUSB
AnalogWrite / PWM on Feather/Metro M0
analogWrite() PWM range
analogWrite() DAC on A0

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 2 of 199

41
41
41
42
42
42
42
44
44
46
47
48
48
49
51
51
51

51
52
52
53
53

53
53
53

54
54
54

56
56
58

59
59

59
59
61

62
62
64
64

64
65
65

65

Missing header files
Bootloader Launching
Aligned Memory Access
Floating Point Conversion
How Much RAM Available?
Storing data in FLASH
Pretty-Printing out registers
Using SPI Flash
Read & Write CircuitPython Files
Format Flash Memory
Datalogging Example
Reading and Printing Files
Full Usage Example
Accessing SPI Flash
Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged the USB!
My Feather never shows up as a COM or Serial port in the Arduino IDE
Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant
upload to it or fix it...
I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!
I'm having problems with COM ports and my Itsy/Feather 32u4/M0
I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"
I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"
I attached some wings to my Feather and now I can't read the battery voltage!

What is CircuitPython?
CircuitPython is based on Python

Why would I use CircuitPython?

CircuitPython
Set up CircuitPython Quick Start!
Further Information

Installing Mu Editor
Installing Mu for Windows or Mac OS X

Installing Mu for Linux
Using Mu

Mu Packages

Creating and Editing Code
Creating Code
Editing Code

Your code changes are run as soon as the file is done saving.

1. Use an editor that writes out the file completely when you save it.
2. Eject or Sync the Drive After Writing
Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Back to Editing Code...

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 3 of 199

65
66
66
66

67
67
68
68
69
70
73
76
78
78
79
80
80
80
81
82

83
83
83
83
83
83
83

84
85
85
85
86
86
87
87
88

88

88
88
88
89
89
89
90

92

Exploring Your First CircuitPython Program
Imports & Libraries
Setting Up The LED
Loop-de-loops

More Changes
Naming Your Program File
Connecting to the Serial Console
Are you using Mu?
Using Something Else?
Interacting with the Serial Console
The REPL
Returning to the serial console
CircuitPython Libraries

Installing the CircuitPython Library Bundle
Example Files
Express Boards
Non-Express Boards
Example: ImportError Due to Missing Library
Library Install on Non-Express Boards
Updating CircuitPython Libraries/Examples

Troubleshooting
Always Run the Latest Version of CircuitPython and Libraries
CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present

You may have a different board.
MakeCode
Windows 10
Windows 7

Windows Explorer Locks Up When Accessing boardnameBOOT Drive
CIRCUITPY Drive Does Not Appear
Serial Console in Mu Not Displaying Anything
CircuitPython RGB Status Light
ValueError: Incompatible .mpy file.
CIRCUITPY Drive Issues

Easiest Way: Use storage.erase_filesystem()
Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger,
Arduino Zero):

Running Out of File Space on Non-Express Boards
Delete something!
Use tabs
Mac OSX loves to add extra files.
Prevent & Remove Mac OSX Hidden Files
Copy Files on Mac OSX Without Creating Hidden Files
Other Mac OSX Space-Saving Tips

Uninstalling CircuitPython

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 4 of 199

92

92
93
95
95
96
97
98

99
100
100
100
100
100
100
100
100

101
102
104

105
105
105
105
106
106

110
110
110
110
111

115
115
115
115
115
116
120

121
121
123

124
124
124
125

129
129
130

Backup Your Code

Moving to MakeCode
Moving to Arduino
Welcome to the Community!

Adafruit Discord
Adafruit Forums
Adafruit Github
ReadTheDocs

CircuitPython Essentials
CircuitPython Built-Ins
Thing That Are Built In and Work

Flow Control
Math
Tuples, Lists, Arrays, and Dictionaries
Classes, Objects and Functions
Lambdas
Random Numbers

CircuitPython Digital In & Out
Find the pins!
Read the Docs

CircuitPython Analog In
Creating the analog input
get_voltage Helper
Main Loop
Changing It Up
Wire it up

CircuitPython Analog Out
Creating an analog output
Setting the analog output
Main Loop
Find the pin

CircuitPython PWM
PWM with Fixed Frequency
Create a PWM Output
Main Loop
PWM Output with Variable Frequency
Wire it up
Where's My PWM?

CircuitPython Servo
Servo Wiring
Servo Code

CircuitPython Cap Touch
Create the Touch Input
Main Loop
Find the Pin(s)

CircuitPython Internal RGB LED
Create the LED
Brightness

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 5 of 199

130
131
132

134
134
135
136
137
137
137
139

140
140
141
143
144
144
144
145

146
146
147
150
151

153
153
156
157
158

160
160
161
162

162
164
164
164

166
167
168

171
171
171
171
171
172
172

172

Main Loop
Making Rainbows (Because Who Doesn't Love 'Em!)
Circuit Playground Express Rainbow

CircuitPython NeoPixel
Wiring It Up
The Code
Create the LED
NeoPixel Helpers
Main Loop
NeoPixel RGBW
Read the Docs

CircuitPython DotStar
Wire It Up
The Code
Create the LED
DotStar Helpers
Main Loop
Is it SPI?
Read the Docs

CircuitPython UART Serial
The Code
Wire It Up
Where's my UART?
Trinket M0: Create UART before I2C

CircuitPython I2C
Wire It Up
Find Your Sensor
I2C Sensor Data
Where's my I2C?

CircuitPython HID Keyboard and Mouse
CircuitPython Keyboard Emulator
Create the Objects and Variables
The Main Loop

CircuitPython Mouse Emulator
Create the Objects and Variables
CircuitPython HID Mouse Helpers
Main Loop

CircuitPython CPU Temp
CircuitPython Storage

Logging the Temperature

CircuitPython Expectations
Always Run the Latest Version of CircuitPython and Libraries
Switching Between CircuitPython and Arduino
The Difference Between Express And Non-Express Boards
Non-Express Boards: Gemma and Trinket

Small Disk Space
No Audio or NVM

Differences Between CircuitPython and MicroPython

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 6 of 199

172
172
172
172
172

173
173
173
173
173
173
173
174
174
174

175
176
176
176
177
177
177
177

179
179

181
181

182
182
182
183
183

184
184
184

185
185
186
187
187

189
189
191
192
192
193
194

195

Differences Between CircuitPython and Python
Python Libraries
Integers in CircuitPython
Floating Point Numbers and Digits of Precision for Floats in CircuitPython
Differences between MicroPython and Python

Frequently Asked Questions
What is a MemoryError?
What do I do when I encounter a MemoryError?
How can I create my own .mpy files?
How do I check how much memory I have free?
Does CircuitPython support interrupts?
Does CircuitPython support ESP32?
Does Feather M0 support WINC1500?
Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
Commonly Used Acronyms

MakeCode
What is MakeCode Maker?

How is it related to makecode.adafruit.com ?
Is it open source?

Adafruit METRO M0 Express - designed for CircuitPython
Adafruit Feather M0 Express - Designed for CircuitPython
Adafruit GEMMA M0 - Miniature wearable electronic platform
Adafruit Trinket M0 - for use with CircuitPython & Arduino IDE

Editing Blocks
Blinky!

Editing JavaScript
Blocks to JavaScript

Downloading and Flashing
Step 1: Connect your board via USB
Step 2: Test your code in the simulator
Step 3: Download and flash your code

General Steps to copy over your program (not specific to any Operating system)

Saving and Sharing
Extracting your code from the board
Sharing

Custom Extensions
Account setup
Commit and push
Conflicts
Testing your package

UF2 Bootloader Details
Entering Bootloader Mode
Using the Mass Storage Bootloader
Using the BOSSA Bootloader

Windows 7 Drivers
Verifying Serial Port in Device Manager
Running bossac on the command line

Updating the bootloader

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 7 of 199

196
197
197
198
198
198
198

Getting Rid of Windows Pop-ups
Making your own UF2
Installing the bootloader on a fresh/bricked board
Downloads
Datasheets
Firmware
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 8 of 199

Overview

We love all our Feathers equally, but this Feather is very special. It's our first Feather that is specifically designed for
use with CircuitPython! CircuitPython is our beginner-oriented flavor of MicroPython - and as the name hints at, its a
small but full-featured version of the popular Python programming language specifically for use with circuitry and
electronics.

That doesn't mean you cant also use it with Arduino IDE! At the Feather M0's heart is an ATSAMD21G18 ARM Cortex
M0+ processor, clocked at 48 MHz and at 3.3V logic, the same one used in the new Arduino
Zero (http://adafru.it/2843). This chip has a whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K
of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with
no need for an FTDI-like chip.

Here's some handy specs!

Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
Light as a (large?) feather - 5 grams
ATSAMD21G18 @ 48MHz with 3.3V logic/power

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 9 of 199

https://www.adafruit.com/products/2843
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3500

256KB of FLASH + 32KB of RAM
No EEPROM
32.768 KHz crystal for clock generation & RTC
3.3V regulator with 500mA peak current output
USB native support, comes with USB bootloader and serial port debugging
You also get tons of pins - 20 GPIO pins
Hardware Serial, hardware I2C, hardware SPI support
PWM outputs on all pins
6 x 12-bit analog inputs
1 x 10-bit analog ouput (DAC)
Built in 100mA lipoly charger with charging status indicator LED
Pin #13 red LED for general purpose blinking
Power/enable pin
4 mounting holes
Reset button

The Feather M0 Express uses the extra space left over to add a Mini NeoPixel, 2 MB SPI Flash storage and a little
prototyping space. You can use the SPI Flash storage like a very tiny hard drive. When used in Circuit Python, the 2
MB flash acts as storage for all your scripts, libraries and files. When used in Arduino, you can read/write files to it, like
a little datalogger or SD card, and then with our helper program, access the files over USB.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 10 of 199

Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE or for
loading Circuit Python. We also toss in some header so you can solder it in and plug into a solderless breadboard.

Lipoly battery and USB cable not included (but we do have lots of options in the shop if you'd like!)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 11 of 199

Pinouts

(There's a typo in the above, AREF Is PA03 not PA02)

The Feather M0 is chock-full of microcontroller goodness. There's also a lot of pins and ports. We'll take you a tour of
them now!

Power Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 12 of 199

GND - this is the common ground for all power and logic
BAT - this is the positive voltage to/from the JST jack for the optional Lipoly battery
USB - this is the positive voltage to/from the micro USB jack if connected
EN - this is the 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator
3V - this is the output from the 3.3V regulator, it can supply 500mA peak

Logic pins

This is the general purpose I/O pin set for the microcontroller.
All logic is 3.3V
Nearly all pins can do PWM output
All pins can be interrupt inputs

#0 / RX - GPIO #0, also receive (input) pin for Serial1 (hardware UART), also can be analog input
#1 / TX - GPIO #1, also transmit (output) pin for Serial1, also can be analog input
SDA - the I2C (Wire) data pin. There's no pull up on this pin by default so when using with I2C, you may need a
2.2K-10K pullup.
SCL - the I2C (Wire) clock pin. There's no pull up on this pin by default so when using with I2C, you may need a
2.2K-10K pullup.
#5 - GPIO #5
#6 - GPIO #6
#9 - GPIO #9, also analog input A7. This analog input is connected to a voltage divider for the lipoly battery so be
aware that this pin naturally 'sits' at around 2VDC due to the resistor divider

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 13 of 199

#10 - GPIO #10
#11 - GPIO #11
#12 - GPIO #12
#13 - GPIO #13 and is connected to the red LED next to the USB jack
A0 - This pin is analog input A0 but is also an analog output due to having a DAC (digital-to-analog converter).
You can set the raw voltage to anything from 0 to 3.3V, unlike PWM outputs this is a true analog output
A1 thru A5 - These are each analog input as well as digital I/O pins.
SCK/MOSI/MISO - These are the hardware SPI pins, you can use them as everyday GPIO pins (but recommend
keeping them free as they are best used for hardware SPI connections for high speed.)

These pins are available in CircuitPython under the board module. Names that start with # are prefixed with D and
other names are as is. So #0 / RX above is available as board.D0 and board.RX for example.

SPI Flash and NeoPixel

As part of the 'Express' series of boards, this Feather is designed for use with CircuitPython. To make that easy, we
have added two extra parts to this Feather M0: a mini NeoPixel (RGB LED) and a 2 MB SPI Flash chip

The NeoPixel is connected to pin #8 in Arduino, so just use our NeoPixel library (https://adafru.it/dhw) and set it up as a
single-LED strand on pin 8. The NeoPixel is powered by the 3.3V power supply but that hasn't shown to make a big
difference in brightness or color. The NeoPixel is also used by the bootloader to let you know if the device has
enumerated correctly (green) or USB failure (red). In CircuitPython, the LED is used to indicate the runtime status.

The SPI Flash is connected to 4 pins that are not brought out on the GPIO pads. This way you don't have to worry
about the SPI flash colliding with other devices on the main SPI connection. Under Arduino, the FLASH SCK pin is #3,
MISO is #2, MOSI is #4, and CS is #38. If you use Feather M0 Express as your board type, you'll be able to access the
Flash SPI port under SPI1 - this is a fully new hardware SPI device separate from the GPIO pins on the outside edge of
the Feather. In CircuitPython, the SPI flash is used natively by the interpretter and is read-only to user code, instead the
Flash just shows up as the writeable disk drive!

Other Pins!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 14 of 199

file:///adafruit-neopixel-uberguide

RST - this is the Reset pin, tie to ground to manually reset the AVR, as well as launch the bootloader manually
ARef - the analog reference pin. Normally the reference voltage is the same as the chip logic voltage (3.3V) but if
you need an alternative analog reference, connect it to this pin and select the external AREF in your firmware.
Can't go higher than 3.3V!

Debug Interface

SWCLK & SWDIO - These pads on the bottom are used to program the chip. They can also be connected to an
SWD debugger.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 15 of 199

Assembly

We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use
and configure your Feather

Header Options!

Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male headers, this

lets you plug in the Feather into a solderless

breadboard

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 16 of 199

https://learn.adafruit.com/assets/30192
https://learn.adafruit.com/assets/30201

Another option is to go with socket female headers. This

won't let you plug the Feather into a breadboard but it

will let you attach featherwings very easily

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 17 of 199

https://learn.adafruit.com/assets/30195
https://learn.adafruit.com/assets/30196

We also have 'slim' versions of the female headers, that

are a little shorter and give a more compact shape

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 18 of 199

https://learn.adafruit.com/assets/30197
https://learn.adafruit.com/assets/30198

Finally, there's the "Stacking Header" option. This one is

sort of the best-of-both-worlds. You get the ability to

plug into a solderless breadboard and plug a

featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 19 of 199

https://learn.adafruit.com/assets/30199
https://learn.adafruit.com/assets/30200
https://learn.adafruit.com/assets/30183

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 20 of 199

https://learn.adafruit.com/assets/30184
https://learn.adafruit.com/assets/30185
https://learn.adafruit.com/assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 21 of 199

https://learn.adafruit.com/assets/30187
https://learn.adafruit.com/assets/30188
https://learn.adafruit.com/assets/30189

You're done! Check your solder joints visually and

continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in place so when

you flip over the board they don't fall out

Flip & Tack Solder
After flipping over, solder one or two points on each

strip, to 'tack' the header in place

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 22 of 199

https://learn.adafruit.com/assets/30190
https://learn.adafruit.com/assets/30203
https://learn.adafruit.com/assets/30204

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 23 of 199

https://learn.adafruit.com/assets/30205
https://learn.adafruit.com/assets/30206

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 24 of 199

https://learn.adafruit.com/assets/30207
https://learn.adafruit.com/assets/30208
https://learn.adafruit.com/assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 25 of 199

https://learn.adafruit.com/assets/30210
https://learn.adafruit.com/assets/30211

Power Management

Battery + USB Power

We wanted to make the Feather easy to power both when connected to a computer as well as via battery. There's two
ways to power a Feather. You can connect with a MicroUSB cable (just plug into the jack) and the Feather will regulate
the 5V USB down to 3.3V. You can also connect a 4.2/3.7V Lithium Polymer (Lipo/Lipoly) or Lithium Ion (LiIon) battery
to the JST jack. This will let the Feather run on a rechargable battery. When the USB power is powered, it will
automatically switch over to USB for power, as well as start charging the battery (if attached) at 100mA. This happens
'hotswap' style so you can always keep the Lipoly connected as a 'backup' power that will only get used when USB
power is lost.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong polarity batteries can destroy
your Feather

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 26 of 199

The above shows the Micro USB jack (left), Lipoly JST jack (top left), as well as the 3.3V regulator and changeover
diode (just to the right of the JST jack) and the Lipoly charging circuitry (to the right of the Reset button). There's also a
CHG LED, which will light up while the battery is charging. This LED might also flicker if the battery is not connected.

Power supplies

You have a lot of power supply options here! We bring out the BAT pin, which is tied to the lipoly JST connector, as
well as USB which is the +5V from USB if connected. We also have the 3V pin which has the output from the 3.3V
regulator. We use a 500mA peak regulator. While you can get 500mA from it, you can't do it continuously from 5V as it
will overheat the regulator. It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the current
draw is 'spikey' & sporadic.

Measuring Battery

If you're running off of a battery, chances are you wanna know what the voltage is at! That way you can tell when the
battery needs recharging. Lipoly batteries are 'maxed out' at 4.2V and stick around 3.7V for much of the battery life,
then slowly sink down to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you can quickly
tell when you're heading below 3.7V

To make this easy we stuck a double-100K resistor divider on the BAT pin, and connected it to D9 (a.k.a analog #7 A7).

In Arduino, you can read this pin's voltage, then double it, to get the battery voltage.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 27 of 199

For CircuitPython, we've written a get_voltage() helper function to do the math for you. All you have to do is call the
function, provide the pin and print the results.

ENable pin

If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply tie this pin to Ground and it will
disable the 3V regulator. The BAT and USB pins will still be powered

// Arduino Example Code

#define VBATPIN A7

float measuredvbat = analogRead(VBATPIN);
measuredvbat *= 2; // we divided by 2, so multiply back
measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
measuredvbat /= 1024; // convert to voltage
Serial.print("VBat: "); Serial.println(measuredvbat);

import board
import analogio

vbat_voltage = analogio.AnalogIn(board.D9)

def get_voltage(pin):
 return (pin.value * 3.3) / 65536 * 2

battery_voltage = get_voltage(vbat_voltage)
print("VBat voltage: {:.2f}".format(battery_voltage))

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 28 of 199

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

https://adafru.it/f1P

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and navigate
to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 29 of 199

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to
build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino IDE
wiki (https://adafru.it/f7U). We will only need to add one URL to the IDE in this example, but you can add multiple URLS
by separating them with commas. Copy and paste the link below into the Additional Boards Manager URLs option in
the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 30 of 199

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager when
you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and M4, ItsyBitsy M0 and M4,
Circuit Playground Express, Gemma M0 and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro and
Leonardo using the arcore project (https://adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box separated
by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 31 of 199

https://github.com/rkistner/arcore

Using with Arduino IDE

The Feather/Metro/Gemma/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51 chip, and you can pretty easily get it
working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels and display) will work with the
M0 and M4, especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you can open
the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select All. You will then be able to select and install the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

Install Adafruit SAMD

Remember you need SETUP the Arduino IDE to support our board packages - see the previous page on how
to add adafruit's URL to the preferences

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 32 of 199

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able to
select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0
ItsyBitsy M0
Hallowing M0
Crickit M0 (this is for direct programming of the Crickit, which is probably not what you want! For advanced
hacking only)
Metro M4 Express
ItsyBitsy M4 Express
Feather M4 Express
Trellis M4 Express

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 33 of 199

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

https://adafru.it/AB0

https://adafru.it/AB0

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 34 of 199

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a few seconds). It will create a
serial/COM port, you can now select it from the drop-down, it'll even be 'indicated' as
Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 35 of 199

Now load up the Blink example

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

If you're using Trellis M4 Express, you can go to the next page cause there's no pin 13 LED - so you won't see it blink.
Still this is a good thing to test compile and upload!

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and it was
programmed, verified & reset

After uploading, you may see a message saying "Disk Not Ejected Properly" about the ...BOOT drive. You can ignore
that message: it's an artifact of how the bootloader and uploading work.

Compilation Issues

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

If you are having issues, make sure you selected the matching Board in the menu that matches the hardware
you have in your hand.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 36 of 199

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit SAMD board
packages

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, click the RST button twice (like a double-click)to get back into the bootloader.

The red LED will pulse, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal upload.

Ubuntu & Linux Issue Fix

Note if you're using Ubuntu 15.04 (or perhaps other more recent Linux distributions) there is an issue with the modem
manager service which causes the Bluefruit LE micro to be difficult to program. If you run into errors like "device or
resource busy", "bad file descriptor", or "port is busy" when attempting to program then you are hitting this
issue. (https://adafru.it/sHE)

The fix for this issue is to make sure Adafruit's custom udev rules are applied to your system. One of these rules is
made to configure modem manager not to touch the Feather board and will fix the programming difficulty issue.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 37 of 199

https://bugs.launchpad.net/ubuntu/+source/modemmanager/+bug/1473246

 Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 38 of 199

file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0

The ATSAMD21 is a very nice little chip but its fairly new as Arduino-compatible cores go. Most sketches & libraries will
work but here's a few things we noticed!

The below note are for all M0 boards, but not all may apply (e.g. Trinket and Gemma M0 do not have ARef so you can
skip the Analog References note!)

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is analogReference(AR_EXTERNAL)

(it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register is the same as the output-selection register.

For the M0, you can't do this anymore! Instead, use

pinMode(pin, INPUT_PULLUP)

which has the benefit of being backwards compatible with AVR.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino SAMD/M0
core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the Official Arduino M0 core, is
called SerialUSB instead.

In the Adafruit M0 Core, we fixed it so that Serial goes to USB when you use a Feather M0 so it will automatically work
just fine.

However, on the off chance you are using the official Arduino SAMD core not the Adafruit version (which really, we
recommend you use our version because as you can see it can vary) & you want your Serial prints and reads to use
the USB port, use SerialUSB instead of Serial in your sketch

If you have existing sketches and code and you want them to work with the M0 without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
 // Required for Serial on Zero based boards
 #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 39 of 199

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options listed in the multiplexer table don't
exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC) and
Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can be enabled
and disabled, and either channel can be inverted. The pins connected to a TC instance can output identical versions of
the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There are options
for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO) channels, and
three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three TCC instances
with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and UART pins keep
their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 40 of 199

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully HIGH. On the ARM cortex, it will set it
to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be fully on, add test code
that checks if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(pin, HIGH)

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure you do not have a line that sets the
pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files

there might be code that uses libraries that are not supported by the M0 core. For example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
 #include <util/delay.h>
 ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line number) and 'wrap
it' with #ifdef's so it looks like:

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the bootloader will
time out after a few seconds. For the M0, you'll need to double click the button. You will see a pulsing red LED to let
you know you're in bootloader mode. Once in that mode, it wont time out! Click reset again if you want to go back to
launching code

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can do this nice
thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];
float f = (float)mybuffer;

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 41 of 199

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to a 2 or 4-byte
boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access
an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU. Thankfully, there's an easy
work around ... just use memcpy!

uint8_t mybuffer[4];
float f;
memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to ASCII strings.
Functions like sprintf will not convert floating point. Fortunately, the standard AVR-LIBC library includes the dtostrf
function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some references to using #include
<avr/dtostrf.h> to get dtostrf in your code. And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so with this handy
function:

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (https://adafru.it/m6D) for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a variable or string in
flash memory to save on RAM. On the ARM, its a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will automatically read from
FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is in FLASH

Pretty-Printing out registers

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 42 of 199

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

There's a lot of registers on the SAMD21, and you often are going through ASF or another framework to get to them.
So having a way to see exactly what's going on is handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 43 of 199

https://github.com/drewfish/arduino-ZeroRegs

Using SPI Flash

One of the best features of the M0 express board is a small SPI flash memory chip built into the board. This memory
can be used for almost any purpose like storing data files, Python code, and more. Think of it like a little SD card that is
always connected to the board, and in fact with Arduino you can access the memory using a library that is very similar
to the Arduino SD card library (https://adafru.it/ucu). You can even read and write files that CircuitPython stores on the
flash chip!

To use the flash memory with Arduino you'll need to install the Adafruit SPI Flash Memory library (https://adafru.it/wbt)
in the Arduino IDE. Click the button below to download the source for this library, open the zip file, and then copy it
into an Adafruit_SPIFlash folder (remove the -master GitHub adds to the downloaded zip and folder) in the Arduino
library folder on your computer (https://adafru.it/dNR):

https://adafru.it/wbu

https://adafru.it/wbu

Once the library is installed open the Arduino IDE and look for the following examples in the library:

fatfs_circuitpython
fatfs_datalogging
fatfs_format
fatfs_full_usage
fatfs_print_file
flash_erase

These examples allow you to format the flash memory with a FAT filesystem (the same kind of filesystem used on SD
cards) and read and write files to it just like a SD card.

Read & Write CircuitPython Files

The fatfs_circuitpython example shows how to read and write files on the flash chip so that they're accessible from
CircuitPython. This means you can run a CircuitPython program on your board and have it store data, then run an
Arduino sketch that uses this library to interact with the same data.

Note that before you use the fatfs_circuitpython example you must have loaded CircuitPython on your board. Load
the latest version of CircuitPython as explained in this guide (https://adafru.it/BeN) first to ensure a CircuitPython
filesystem is initialized and written to the flash chip. Once you've loaded CircuitPython then you can run the
fatfs_circuitpython example sketch.

To run the sketch load it in the Arduino IDE and upload it to the Feather/Metro/ItsyBitsy M0 board. Then open the
serial monitor at 115200 baud. You should see the serial monitor display messages as it attempts to read files and write
to a file on the flash chip. Specifically the example will look for a boot.py and main.py file (like what CircuitPython runs
when it starts) and print out their contents. Then it will add a line to the end of a data.txt file on the board (creating it if
it doesn't exist already). After running the sketch you can reload CircuitPython on the board and open the data.txt file
to read it from CircuitPython!

To understand how to read & write files that are compatible with CircuitPython let's examine the sketch code. First
notice an instance of the Adafruit_M0_Express_CircuitPython class is created and passed an instance of the flash
chip class in the last line below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 44 of 199

https://www.arduino.cc/en/reference/SD
https://github.com/adafruit/Adafruit_SPIFlash
file:///adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_SPIFlash/archive/master.zip
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/kattni-circuitpython

By using this Adafruit_M0_Express_CircuitPython class you'll get a filesystem object that is compatible with reading
and writing files on a CircuitPython-formatted flash chip. This is very important for interoperability between
CircuitPython and Arduino as CircuitPython has specialized partitioning and flash memory layout that isn't compatible
with simpler uses of the library (shown in the other examples).

Once an instance of the Adafruit_M0_Express_CircuitPython class is created (called pythonfs in this sketch) you can
go on to interact with it just like if it were the SD card library in Arduino (https://adafru.it/wbw). You can open files for
reading & writing, create directories, delete files and directories and more. Here's how the sketch checks if a boot.py
file exists and prints it out a character at a time:

Notice the exists function is called to check if the boot.py file is found, and then the open function is used to open it in
read mode. Once a file is opened you'll get a reference to a File class object which you can read and write from as if it
were a Serial device (again just like the SD card library, all of the same File class functions are
available (https://adafru.it/wbw)). In this case the available function will return the number of bytes left to read in the
file, and the read function will read a character at a time to print it to the serial monitor.

Writing a file is just as easy, here's how the sketch writes to data.txt:

#define FLASH_SS SS1 // Flash chip SS pin.
#define FLASH_SPI_PORT SPI1 // What SPI port is Flash on?

Adafruit_SPIFlash flash(FLASH_SS, &FLASH_SPI_PORT); // Use hardware SPI

// Alternatively you can define and use non-SPI pins!
//Adafruit_SPIFlash flash(SCK1, MISO1, MOSI1, FLASH_SS);

// Finally create an Adafruit_M0_Express_CircuitPython object which gives
// an SD card-like interface to interacting with files stored in CircuitPython's
// flash filesystem.
Adafruit_M0_Express_CircuitPython pythonfs(flash);

 // Check if a boot.py exists and print it out.
 if (pythonfs.exists("boot.py")) {
 File bootPy = pythonfs.open("boot.py", FILE_READ);
 Serial.println("Printing boot.py...");
 while (bootPy.available()) {
 char c = bootPy.read();
 Serial.print(c);
 }
 Serial.println();
 }
 else {
 Serial.println("No boot.py found...");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 45 of 199

https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD

Again the open function is used but this time it's told to open the file for writing. In this mode the file will be opened for
appending (i.e. data added to the end of it) if it exists, or it will be created if it doesn't exist. Once the file is open print
functions like print and println can be used to write data to the file (just like writing to the serial monitor). Be sure to
close the file when finished writing!

That's all there is to basic file reading and writing. Check out the fatfs_full_usage example for examples of even more
functions like creating directories, deleting files & directories, checking the size of files, and more! Remember though
to interact with CircuitPython files you need to use the Adafruit_Feather_M0_CircuitPython class as shown in the
fatfs_circuitpython example above!

Format Flash Memory

The fatfs_format example will format the SPI flash with a new blank filesystem. Be warned this sketch will delete all
data on the flash memory, including any Python code or other data you might have stored! The format sketch is
useful if you'd like to wipe everything away and start fresh, or to help get back in a good state if the memory should
get corrupted for some reason.

Be aware too the fatfs_format and examples below are not compatible with a CircuitPython-formatted flash chip! If
you need to share data between Arduino & CircuitPython check out the fatfs_circuitpython example above.

To run the format sketch load it in the Arduino IDE and upload it to the M0 board. Then open the serial monitor at
115200 baud. You should see the serial monitor display a message asking you to confirm formatting the flash. If you
don't see this message then close the serial monitor, press the board's reset button, and open the serial monitor again.

 // Create or append to a data.txt file and add a new line
 // to the end of it. CircuitPython code can later open and
 // see this file too!
 File data = pythonfs.open("data.txt", FILE_WRITE);
 if (data) {
 // Write a new line to the file:
 data.println("Hello CircuitPython from Arduino!");
 data.close();
 // See the other fatfs examples like fatfs_full_usage and fatfs_datalogging
 // for more examples of interacting with files.
 Serial.println("Wrote a new line to the end of data.txt!");
 }
 else {
 Serial.println("Error, failed to open data file for writing!");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 46 of 199

Type OK and press enter in the serial monitor input to confirm that you'd like to format the flash memory. You need to
enter OK in all capital letters!

Once confirmed the sketch will format the flash memory. The format process takes about a minute so be patient as the
data is erased and formatted. You should see a message printed once the format process is complete. At this point
the flash chip will be ready to use with a brand new empty filesystem.

Datalogging Example

One handy use of the SPI flash is to store data, like datalogging sensor readings. The fatfs_datalogging example
shows basic file writing/datalogging. Open the example in the Arduino IDE and upload it to your Feather M0 board.
 Then open the serial monitor at 115200 baud. You should see a message printed every minute as the sketch writes a
new line of data to a file on the flash filesystem.

To understand how to write to a file look in the loop function of the sketch:

Just like using the Arduino SD card library you create a File object by calling an open function and pointing it at the
name of the file and how you'd like to open it (FILE_WRITE mode, i.e. writing new data to the end of the file). Notice

 // Open the datalogging file for writing. The FILE_WRITE mode will open
 // the file for appending, i.e. it will add new data to the end of the file.
 File dataFile = fatfs.open(FILE_NAME, FILE_WRITE);
 // Check that the file opened successfully and write a line to it.
 if (dataFile) {
 // Take a new data reading from a sensor, etc. For this example just
 // make up a random number.
 int reading = random(0,100);
 // Write a line to the file. You can use all the same print functions
 // as if you're writing to the serial monitor. For example to write
 // two CSV (commas separated) values:
 dataFile.print("Sensor #1");
 dataFile.print(",");
 dataFile.print(reading, DEC);
 dataFile.println();
 // Finally close the file when done writing. This is smart to do to make
 // sure all the data is written to the file.
 dataFile.close();
 Serial.println("Wrote new measurement to data file!");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 47 of 199

however instead of calling open on a global SD card object you're calling it on a fatfs object created earlier in the
sketch (look at the top after the #define configuration values).

Once the file is opened it's simply a matter of calling print and println functions on the file object to write data inside of
it. This is just like writing data to the serial monitor and you can print out text, numeric, and other types of data. Be
sure to close the file when you're done writing to ensure the data is stored correctly!

Reading and Printing Files

The fatfs_print_file example will open a file (by default the data.csv file created by running the fatfs_datalogging
example above) and print all of its contents to the serial monitor. Open the fatfs_print_file example and load it on your
Feather M0 board, then open the serial monitor at 115200 baud. You should see the sketch print out the contents of
data.csv (if you don't have a file called data.csv on the flash look at running the datalogging example above first).

To understand how to read data from a file look in the setup function of the sketch:

Just like when writing data with the datalogging example you create a File object by calling the open function on a
fatfs object. This time however you pass a file mode of FILE_READ which tells the filesystem you want to read data.

After you open a file for reading you can easily check if data is available by calling the available function on the file,
and then read a single character with the read function. This makes it easy to loop through all of the data in a file by
checking if it's available and reading a character at a time. However there are more advanced read functions you can
use too--see the fatfs_full_usage example or even the Arduino SD library documentation (https://adafru.it/ucu) (the SPI
flash library implements the same functions).

Full Usage Example

For a more complete demonstration of reading and writing files look at the fatfs_full_usage example. This examples
uses every function in the library and demonstrates things like checking for the existence of a file, creating directories,
deleting files, deleting directories, and more.

Remember the SPI flash library is built to have the same functions and interface as the Arduino SD
library (https://adafru.it/ucu) so if you have code or examples that store data on a SD card they should be easy to adapt
to use the SPI flash library, just create a fatfs object like in the examples above and use its open function instead of the
global SD object's open function. Once you have a reference to a file all of the functions and usage should be the
same between the SPI flash and SD libraries!

 // Open the file for reading and check that it was successfully opened.
 // The FILE_READ mode will open the file for reading.
 File dataFile = fatfs.open(FILE_NAME, FILE_READ);
 if (dataFile) {
 // File was opened, now print out data character by character until at the
 // end of the file.
 Serial.println("Opened file, printing contents below:");
 while (dataFile.available()) {
 // Use the read function to read the next character.
 // You can alternatively use other functions like readUntil, readString, etc.
 // See the fatfs_full_usage example for more details.
 char c = dataFile.read();
 Serial.print(c);
 }
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 48 of 199

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD

Accessing SPI Flash

Arduino doesn't have the ability to show up as a 'mass storage' disk drive. So instead we must use CircuitPython to do
that part for us. Here's the full technique:

Start the bootloader on the Express board. Drag over the latest circuitpython uf2 file
After a moment, you should see a CIRCUITPY drive appear on your hard drive with boot_out.txt on it
Now go to Arduino and upload the fatfs_circuitpython example sketch from the Adafruit SPI library. Open the
serial console. It will successfully mount the filesystem and write a new line to data.txt

Back on your computer, re-start the Express board bootloader, and re-drag circuitpython.uf2 onto the BOOT
drive to reinstall circuitpython
Check the CIRCUITPY drive, you should now see data.txt which you can open to read!

Once you have your Arduino sketch working well, for datalogging, you can simplify this procedure by dragging
CURRENT.UF2 off of the BOOT drive to make a backup of the current program before loading circuitpython on. Then
once you've accessed the file you want, re-drag CURRENT.UF2 back onto the BOOT drive to re-install the Arduino
sketch!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 49 of 199

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 50 of 199

Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a lot easier to debug a program
because you get to see all the USB data output. If you want to run your Feather without USB connectivity, delete or
comment out that line

My Feather never shows up as a COM or Serial port in the Arduino IDE

A vast number of Itsy/Feather 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are serious! They tend to be low quality in
general, and will only confuse you and others later, just get a good data+charge USB cable

Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant
upload to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if you set a watchdog timer or
sleep mode that stops USB, or any sketch that 'crashes' your board

1. Turn on verbose upload in the Arduino IDE preferences
2. Plug in Itsy or Feather 32u4/M0, it won't show up as a COM/serial port that's ok
3. Open up the Blink example (Examples->Basics->Blink)
4. Select the correct board in the Tools menu, e.g. Feather 32u4, Feather M0, Itsy 32u4 or M0 (physically check

your board to make sure you have the right one selected!)
5. Compile it (make sure that works)
6. Click Upload to attempt to upload the code
7. The IDE will print out a bunch of COM Ports as it tries to upload. During this time, double-click the reset

button, you'll see the red pulsing LED that tells you its now in bootloading mode
8. The board will show up as the Bootloader COM/Serial port
9. The IDE should see the bootloader COM/Serial port and upload properly

Even though this FAQ is labeled for Feather, the questions apply to ItsyBitsy's as well!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 51 of 199

I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino Boards menu.

If you have a Feather 32u4 (look on the board to read what it is you have) Make sure you select Feather 32u4 for
ATMega32u4 based boards! Do not use anything else, do not use the 32u4 breakout board line.

If you have a Feather M0 (look on the board to read what it is you have) Make sure you select Feather M0 - do not
use 32u4 or Arduino Zero

If you have a ItsyBitsy M0 (look on the board to read what it is you have) Make sure you select ItsyBitsy M0 - do not
use 32u4 or Arduino Zero

I'm having problems with COM ports and my Itsy/Feather 32u4/M0

Theres two COM ports you can have with the 32u4/M0, one is the user port and one is the bootloader port. They
are not the same COM port number!

When you upload a new user program it will come up with a user com port, particularly if you use Serial in your user
program.

If you crash your user program, or have a program that halts or otherwise fails, the user COM port can disappear.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 52 of 199

When the user COM port disappears, Arduino will not be able to automatically start the bootloader and upload
new software.

So you will need to help it by performing the click-during upload procedure to re-start the bootloader, and upload
something that is known working like "Blink"

I don't understand why the COM port disappears, this does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific PL2303" etc etc) which handles all
serial port capability seperately than the main chip. This way if the main chip fails, you can always use the COM port.

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main processor performs this task for you. It
allows for a lower cost, higher power setup...but requires a little more effort since you will need to 'kick' into the
bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors

This is likely because the bootloader is not kicking in and you are accidentally trying to upload to the wrong COM
port

The best solution is what is detailed above: manually upload Blink or a similar working sketch by hand by manually
launching the bootloader

I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"

You probably don't have Feather M0 selected in the boards drop-down. Make sure you selected Feather M0.

I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"

You probably don't have Feather M0 / Feather 32u4 selected in the boards drop-down. Make sure you selected
Feather M0 (or Feather 32u4).

I attached some wings to my Feather and now I can't read the battery voltage!

Make sure your Wing doesn't use pin #9 which is the analog sense for the lipo battery!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 53 of 199

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on low-cost
microcontroller boards. It makes getting started easier than ever with no upfront desktop downloads needed. Once
you get your board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and universities. It's a high-level
programming language which means it's designed to be easier to read, write and maintain. It supports modules and
packages which means it's easy to reuse your code for other projects. It has a built in interpreter which means there
are no extra steps, like compiling, to get your code to work. And of course, Python is Open Source Software which
means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python knowledge, you can
easily apply that to using CircuitPython. If you have no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a microcontroller
chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a microcontroller board!
CircuitPython is easy to use because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs immediately.
There is no compiling, no downloading and no uploading needed.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 54 of 199

You're new to programming. CircuitPython is designed with education in mind. It's easy to start learning how to
program and you get immediate feedback from the board.
Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like, you can also
keep multiple files around for easy experimentation.
The serial console and REPL. These allow for live feedback from your code and interactive programming.
File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio clips, and
otherwise interacting with files.
Strong hardware support. There are many libraries and drivers for sensors, breakout boards and other external
components.
It's Python! Python is the fastest-growing programming language. It's taught in schools and universities.
CircuitPython is almost-completely compatible with Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We welcome and
encourage feedback from the community, and we incorporate this into how we are developing CircuitPython. That's
the core of the open source concept. This makes CircuitPython better for you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 55 of 199

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify
experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by
requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already installed CircuitPython but are
looking to update it or reinstall it, the same steps work for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

https://adafru.it/vlF

https://adafru.it/vlF

Click the link above to download the latest UF2 file.

Download and save it to your desktop (or wherever is

handy).

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If
you are running CircuitPython 2.x, you need to update to 3.x: https://learn.adafruit.com/welcome-to-
circuitpython/installing-circuitpython

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 56 of 199

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/circuitpython
https://micropython.org
https://github.com/adafruit/circuitpython/releases/latest/adafruit-circuitpython-feather_m0_express-*.uf2
https://learn.adafruit.com/assets/50088

Plug your Feather M0 into your computer using a

known-good USB cable.

A lot of people end up using charge-only USB cables

and it is very frustrating! So make sure you have a USB

cable you know is good for data sync.

Double-click the Reset button next to the USB

connector on your board, and you will see the NeoPixel

RGB LED turn green. If it turns red, check the USB cable,

try another USB port, etc. Note: The little red LED next

to the USB connector will pulse red. That's ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

You will see a new disk drive appear called

FEATHERBOOT.

Drag the adafruit_circuitpython_etc.uf2 file to

FEATHERBOOT.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 57 of 199

https://learn.adafruit.com/assets/50098
https://learn.adafruit.com/assets/50095
https://learn.adafruit.com/assets/50096

The LED will flash. Then, the FEATHERBOOT drive will

disappear and a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (https://adafru.it/Amd).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 58 of 199

https://learn.adafruit.com/assets/50097
file:///welcome-to-circuitpython/installing-circuitpython

Installing Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and works on
Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get immediate feedback from your
board's serial output!

Installing Mu for Windows or Mac OS X

To install Mu for Windows or Mac OS X, head over to the Download Mu (https://adafru.it/BI8) page and follow the
instructions.

It's that simple!

Please note, the current Mu release doesn't have support for the NeoTrellis M4 board, in which case you should
install our builds:

https://adafru.it/Dg6

https://adafru.it/Dg6

https://adafru.it/Dj7

https://adafru.it/Dj7

Installing Mu for Linux

Each Linux distro is a little different, so use this as a guideline!

1. Mu require python version 3. If you haven't installed python yet, do so via your command line using something
like sudo apt-get install python3

2. You'll also need pip3 (or pip if you only have python3 installed) - try running pip3 --version . If that didn't work, you
ran sudo apt-get install python3-pip

3. Finally, run pip3 install mu-editor

4. You can now run mu-editor directly from the command line

You can also follow the instructions found here to install Mu using Python (https://adafru.it/BI9) and install Mu on a
Raspberry Pi (https://adafru.it/BIb).

Using Mu

Mu is our recommended editor - please use it (unless you are an experienced coder with a favorite editor
already!)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 59 of 199

https://codewith.mu/en/download
https://cdn-learn.adafruit.com/assets/assets/000/067/376/original/Mu_1.0.1.exe?1544402557
https://s3-eu-west-2.amazonaws.com/mu-builds/osx/mu-editor_2018-12-12_16_03_master_26fad5f.zip
https://codewith.mu/en/howto/install_with_python
https://codewith.mu/en/howto/install_raspberry_pi

The first time you start Mu, you will be prompted to

select your 'mode' - you can always change your mind

later. For now please select Adafruit!

The current mode is displayed in the lower right corner

of the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click on that and then

choose "Adafruit" in the dialog box that appears.

Mu attempts to auto-detect your board, so please plug

in your CircuitPython device and make sure it shows up

as a CIRCUITPY drive before starting Mu

Now you're ready to code! Lets keep going....

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 60 of 199

https://learn.adafruit.com/assets/49641
https://learn.adafruit.com/assets/49642

Mu Packages

Mu is currently being developed. So there are lots of changes being made! Current versions are available from links at
the bottom of this page (https://adafru.it/Be5). However, use at your own risk! These are not stable versions and come
with no guarantees of working.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 61 of 199

https://github.com/mu-editor/mu/tree/master/package

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section, we're going to
cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend using Mu! It's
designed for CircuitPython, and it's really simple and easy to use, with a built in serial console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad on Windows,
TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back changes immediately to files that
you edit. That can cause problems when using CircuitPython. See the Editing Code (https://adafru.it/id3) section below.
If you want to skip that section for now, make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux
after writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 62 of 199

https://learn.adafruit.com/assets/49645

It will look like this - note that under the while True: line,

the next four lines have spaces to indent them, but

they're indented exactly the same amount. All other

lines have no spaces before the text.

Save this file as code.py on your CIRCUITPY drive.

On each board you'll find a tiny red LED. It should now be blinking. Once per second

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 63 of 199

https://learn.adafruit.com/assets/49646
https://learn.adafruit.com/assets/49649
https://learn.adafruit.com/assets/49650

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically re-start your
code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On Windows
using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds to complete because
the text editor does not save the file completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes writing the file to
your board, you can corrupt the drive. If this happens, you may lose the code you've written, so it's important to backup
your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (https://adafru.it/Be7)
vim (https://adafru.it/ek9) / vi safely writes all changes
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes

Don't Click Reset or Unplug!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 64 of 199

https://learn.adafruit.com/assets/49651
https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
http://www.vim.org/
https://www.sublimetext.com/
https://code.visualstudio.com/

Recommended only with particular settings or with add-ons:

The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System Settings-
>Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install this package (https://adafru.it/Be8) so that it will always write
out all changes to files on CIRCUITPY .
SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the editors above!
If you are using notepad, be sure to eject the drive (see below)
IDLE does not force out changes immediately
nano (on Linux) does not force out changes
Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force the operating
system to save your file to disk. On Linux, use the sync command in a terminal to force the write to disk.

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the steps found
on the Troubleshooting page of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll make a
simple change. Change the first 0.5 to 0.1 . The code should look like this:

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something changed! Do
you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 65 of 199

https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/circuitpython-force-to-drive
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.

The import statements tells the board that you're going to use a particular library in your code. In this example, we
imported three libraries: board , digitalio , and time . All three of these libraries are built into CircuitPython, so no
separate files are needed. That's one of the things that makes this an excellent first example. You don't need any thing
extra to make it work! board gives you access to the hardware on your board, digitalio lets you access that hardware
as inputs/outputs and time let's you pass time by 'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

Your board knows the red LED as D13 . So, we initialise that pin, and we set it to output. We set led to equal the rest
of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:". while True:

creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never False, the code will loop
forever. All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 66 of 199

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) . This line is
telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the led on and off, the led
will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells CircuitPython to pause
for another 0.5 seconds. This occurs between turning the led off and back on so the LED will be off for 0.5 seconds
too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the LED on. So it
blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased the amount
of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what happens! These
were simple changes, but major changes are done using the same process. Make your desired change, save it, and
get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt and main.py.
CircuitPython looks for those files, in that order, and then runs the first one it finds. While we suggest using code.py as
your code file, it is important to know that the other options exist. If your program doesn't seem to be updating as you
work, make sure you haven't created another code file that's being read instead of the one you're working on.

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 67 of 199

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are seeing "AT"
and other gibberish when you connect, then the modemmanager service might be interfering. Just remove it;
it doesn't have much use unless you're still using dial-up modems. To remove, type this command at a shell:

sudo apt purge modemmanager

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 68 of 199

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

Once in Mu, look for the Serial button in the menu and click it.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for more
details (https://adafru.it/AAI)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 69 of 199

file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include
your phrase between the quotation marks inside the parentheses. For example:

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when
the board reboots. Then you'll see your new change!

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 70 of 199

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file. This is
normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's introduce
an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 71 of 199

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The next
line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined with knowing
the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 72 of 199

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C and
interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when troubleshooting, but
for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 73 of 199

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us
where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.

Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!
This is a perfect place to start. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 74 of 199

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but
that's not the case! If you recall, the import statement simply tells the code to expect to do something with that module.
In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 75 of 199

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 76 of 199

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 77 of 199

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib .
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, its in the base directory of the drive. If not, simply create the folder
yourself.

CircuitPython libraries work in the same was as regular Python modules so the Python docs (https://adafru.it/rar) are a
great reference for how it all should work. In Python terms, we can place our library files in the lib directory because its
part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If
you are running CircuitPython 2.x, you need to update to 3.x. You must download the CircuitPython Library
Bundle that matches your version of CircuitPython. Please update to CircuitPython 3.x and then download the
3.x bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 78 of 199

https://docs.python.org/3/tutorial/modules.html

full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython 3.x Bundle release by clicking this button:

https://adafru.it/y8E

https://adafru.it/y8E

If you need another version, you can also visit the bundle release page (https://adafru.it/Ayy) which will let you select
exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version. If you don't know the version,
look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if you're running v3.0.2,
download the v3 library bundle. There's also a py bundle which contains the uncompressed python files, you probably
don't want that!

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle. These are
included for two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized purposes.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 79 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/adafruit-circuitpython-bundle-3.*zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Express Boards

If you are using a Feather M0 Express, Metro M0 Express or Circuit Playground Express (or any other "Express" board)
your CircuitPython board comes with at least 2 MB of Flash storage. This is plenty of space for all of our library files so
we recommend you just install them all! (If you have a Gemma M0 or Trinket M0 or other non-Express board, skip
down to the next section)

On Express boards, the lib and examples directories can be copied directly to the CIRCUITPY drive.

Just drag the entire lib and examples (optional) folders into the CIRCUITPY drive, and 'replace' any old files if your
operating system prompts you.

To use any of the supplied example files, from either the REPL or inside a code.py/main.py, simply import them using
the filename:

Non-Express Boards

If you are using Trinket M0 or Gemma M0, you will need to load the libraries individually, due to file space
restrictions. If you are using a non-express board, or you would rather load libraries as you use them, you'll first want to
create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create a new folder, and
call it lib . Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a number of folders and
.mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be converted to .mpy

using the mpy-cross utility if you encounter MemoryError s. This is discussed in the CircuitPython Essentials
Guide (https://adafru.it/CTw). Usage is the same as described above in the Express Boards section. Note: If you do not
place examples in a separate folder, you would remove the examples. from the import statement.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue. This demonstration will only return an error if you do not
have the required library loaded into the lib folder on your CIRCUITPY drive.

import examples.adxl34x_simpletest

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 80 of 199

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6

Let's use a modified version of the blinky example.

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy . This is the library file we're looking for! Follow the steps above to load an individual library
file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

Library Install on Non-Express Boards

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 81 of 199

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to your
code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

For these boards, your internal storage is from the chip itself. So, these boards don't have enough space for all of the
libraries. If you try to copy over the entire lib folder you won't have enough space on your CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on your
CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your lib folder, it
will ask if you want to replace it. Say yes. That's it!

If you'd like to update the entire bundle at once, drag the lib and examples folder to your CIRCUITPY drive. Different
operating systems will have a different dialog pop up. You want to tell it to replace the current folder. Then you're
updated and ready to go!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 82 of 199

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If you are
running CircuitPython 2.x, you need to update to 3.x (https://adafru.it/Amd).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update to
CircuitPython 3.x and then download the 3.x bundle (https://adafru.it/ABU).

We will soon stop providing the 2.x bundle as an automatically created download on the Adafruit CircuitPython Bundle
repo. If you must continue to use 2.x, you can still download the 2.x version of mpy-cross from the 2.x release of
CircuitPython on the CircuitPython repo and create your own 2.x compatible .mpy library files. However, it is best to
update to 3.x for both CircuitPython and the library bundle.

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader
 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-
compatible bootloader, which does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the reset button
just once to get the CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps
and uninstall all the "Adafruit" driver programs.

Windows 7

The latest version of the Adafruit Windows Drivers (version 2.0.0.0 or later) will fix the missing boardnameBOOT drive
problem on Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If
you are running CircuitPython 2.x, you need to update to 3.x. You must download the CircuitPython Library
Bundle that matches your version of CircuitPython. Please update to CircuitPython 3.x and then download the
3.x bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 83 of 199

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#download-the-latest-version-3-4
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries#installing-the-circuitpython-library-bundle-11-4
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode

everything named "Windows Driver Package - Adafruit Industries LLC ...".

Now install the new 2.3.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and
when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not work for you!

Windows Explorer Locks Up When Accessing boardnameBOOT Drive

On Windows, several third-party programs we know of can cause issues. The symptom is that you try to access the
boardnameBOOT drive, and Windows or Windows Explorer seems to lock up. These programs are known to cause

trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired hardware to test,

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 84 of 199

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe
https://forums.adafruit.com
https://adafru.it/discord

and released a beta version that fixes the problem. This may have been incorporated into the latest release.
Please let us know in the forums if you test thi.s
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects of
Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. We haven't yet figured out a settings change
that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Serial Console in Mu Not Displaying Anything

There are times when the serial console will accurately not display anything, such as, when no code is currently
running, or when code with no serial output is already running before you open the console. However, if you find
yourself in a situation where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console panel may
be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines followed by
Press any key to enter the REPL. Use CTRL-D to reload. . If this is the case, you need to either mouse over the top of the
panel to utilise the option to resize the serial panel, or use the scrollbar on the right side to scroll up and find your
message.

This applies to any kind of serial output whether it be error messages or print statements. So before you start trying to
debug your problem on the hardware side, be sure to check that you haven't simply missed the serial messages due to
serial output panel height.

CircuitPython RGB Status Light

The Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express, ItsyBitsy M4
Express, Gemma M0, and Trinket M0 all have a single NeoPixel or DotStar RGB LED on the board that indicates the
status of CircuitPython.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 85 of 199

Circuit Playground Express does NOT have a status LED. The LEDs will pulse green when in the bootloader. They do
NOT indicate any status while running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
YELLOW: Circuit Python is in safe mode: it crashed and restarted
WHITE: REPL is running
BLUE: Circuit Python is starting up

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file that was generated by a different
version of CircuitPython than the one its being loaded into. In particular, the mpy binary format changed between
CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of the library
that triggered the error on import . They are all available in the Adafruit bundle (https://adafru.it/y8E).

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version 2.2.4, and
the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops
showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to provide the USB
services. Reset the board so you get a boardnameBOOT drive rather than a CIRCUITPY drive, copy the latest version
of CircuitPython (.uf2) back to the board, then Reset. This may restore CIRCUITPY functionality.

If still broken - When the CIRCUITPY disk is not safely ejected before being reset by the button or being disconnected
from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 86 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Easiest Way: Use storage.erase_filesystem()

Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If you have an
older version of CircuitPython on your board, you can update to the newest version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal program.
2. Type:

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

 1. Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/AdJ

https://adafru.it/AdK

https://adafru.it/AdK

https://adafru.it/AYe

https://adafru.it/AYe

https://adafru.it/DjD

https://adafru.it/DjD

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The onboard NeoPixel will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the NeoPixel will light up green.
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2 file to
the boardnameBOOT drive.

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.

>>> import storage
>>> storage.erase_filesystem()

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 87 of 199

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/052/803/original/Metro_M4_QSPI_Eraser.UF2?1523220029
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
file:///welcome-to-circuitpython/installing-circuitpython

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd). You'll also need to install your libraries and code!

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

 1. Download the erase file:

https://adafru.it/AdL

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.
 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto,
Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

Just follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed), which will erase and re-create
CIRCUITPY .

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that
you aren't using anymore or test code that isn't in use.

Use tabs

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 88 of 199

file:///welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

Mac OSX loves to add extra files.

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available
on OSX:

Prevent & Remove Mac OSX Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is
the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop hidden files
from being created on the board:

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this
point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file that
was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily you can
run a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on Mac OSX Without Creating Hidden Files

ls -l /Volumes

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 89 of 199

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some
cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the
board use a command like:

Or to copy a folder and all of its child files/folders use a command like:

Other Mac OSX Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

Lets remove the ._ files first.

 cp -X foo.mpy /Volumes/CIRCUITPY

cp -rX folder_to_copy /Volumes/CIRCUITPY

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 90 of 199

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 91 of 199

Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit Playground Express
can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk drive. That
means your main.py or code.py any other files, the lib folder etc. You may lose these files when you remove
CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop computer like you would
with any USB drive.

Moving to MakeCode

If you want to go back to using MakeCode, its really easy. Visit makecode.adafruit.com (https://adafru.it/wpC) and find
the program you want to upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT directory
shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 92 of 199

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to single click the
reset button

Moving to Arduino

If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like with
MakeCode

Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 93 of 199

Create a new simple Blink sketch example:

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully, the serial
Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will automatically
reset when you upload

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 94 of 199

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,
Discord is a digital maker space with makers from around the world.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 95 of 199

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid support folks to
answer any questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be
working, the forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use
the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is the best place to post your
CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 96 of 199

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to
CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/ (https://adafru.it/d6C)and sign
up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find a list that
includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified as something that
someone with any level of experience can help with. These issues include options like updating documentation,
providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 97 of 199

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%3Aissue+is%3Aopen
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython. This is where
you'll find things like API documentation and details about core modules. There is also a Design Guide that includes
contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core
modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the available
parameters and an explanation for each. In many cases, you'll find quick code examples to help you understand how
the modules and parameters work, however it won't have detailed explanations like the Learn Guides. If you want help
understanding what's going on behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to
help!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 98 of 199

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide (https://adafru.it/cpy-welcome). You've already gotten
everything setup, and you've gotten CircuitPython running. Great! Now what? CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used libraries available. This guide will
introduce you to these and show you an example of how to use each one.

Each section will present you with a piece of code designed to work with different boards, and explain how to use the
code with each board. These examples work with any board designed for CircuitPython, including Circuit Playground
Express, Trinket M0, Gemma M0, ItsyBitsy M0 Express, ItsyBitsy M4 Express, Feather M0 Express, Feather M4
Express, Metro M4 Express, and Metro M0 Express.

Some examples require external components, such as switches or sensors. You'll find wiring diagrams where
applicable to show you how to wire up the necessary components to work with each example.

Let's get started learning the CircuitPython Essentials!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 99 of 199

file:///welcome-to-circuitpython

CircuitPython Built-Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)
['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs', 'floor', 'fmod', 'frexp',

'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and float whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our many examples like this MCP9808
library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2
>>> g(8)
64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and max .

This is not an exhaustive list! It's simply some of the many features you can use.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 100 of 199

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

CircuitPython Digital In & Out

The first part of interfacing with hardware is being able to manage digital inputs and outputs. With CircuitPython, it's
super easy!

This example shows how to use both a digital input and output. You can use a switch input with pullup resistor (built in)
to control a digital output - the built in red LED.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

Note that we made the code a little less "Pythonic" than necessary. The if/else block could be replaced with a simple
led.value = not switch.value but we wanted to make it super clear how to test the inputs. The interpreter will read the
digital input when it evaluates switch.value .

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express, ItsyBitsy M4 Express, no
changes to the initial example are needed.

For Feather M0 Express and Feather M4 Express, comment out switch = DigitalInOut(board.D2) (and/or switch =

DigitalInOut(board.D7) depending on what changes you already made), and uncomment switch = DigitalInOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch = DigitalInOut(board.D2) (and/or switch =

DigitalInOut(board.D5) depending on what changes you already made), and uncomment switch = DigitalInOut(board.D7) .

To find the pin or pad suggested in the code, see the list below. For the boards that require wiring, wire up a switch
(also known as a tactile switch, button or push-button), following the diagram for guidance. Press or slide the switch,

CircuitPython IO demo #1 - General Purpose I/O
import time
import board
from digitalio import DigitalInOut, Direction, Pull

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

For Gemma M0, Trinket M0, Metro M0 Express, ItsyBitsy M0 Express, Itsy M4 Express
switch = DigitalInOut(board.D2)
switch = DigitalInOut(board.D5) # For Feather M0 Express, Feather M4 Express
switch = DigitalInOut(board.D7) # For Circuit Playground Express
switch.direction = Direction.INPUT
switch.pull = Pull.UP

while True:
 # We could also do "led.value = not switch.value"!
 if switch.value:
 led.value = False
 else:
 led.value = True

 time.sleep(0.01) # debounce delay

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # + space
from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 101 of 199

and the onboard red LED will turn on and off.

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have internal pulldowns with Pull.DOWN
and if you want to turn off the pullup/pulldown just assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested for use as input, and the location of
the D13 LED.

Circuit Playground Express

We're going to use the switch, which is pin D7, and is

located between the battery connector and the reset

switch on the board. D13 is labeled D13 and is located

next to the USB micro port.

To use D7, comment out the current pin setup line, and

uncomment the line labeled for Circuit Playground

Express. See the details above!

Trinket M0

D2 is connected to the blue wire, labeled "2", and

located between "3V" and "1" on the board. D13 is

labeled "13" and is located next to the USB micro port.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 102 of 199

https://learn.adafruit.com/assets/51501
https://learn.adafruit.com/assets/51505

Gemma M0

D2 is an alligator-clip-friendly pad labeled both "D2" and

"A1", shown connected to the blue wire, and is next to

the USB micro port. D13 is located next to the "GND"

label on the board, above the "On/Off" switch.

Use alligator clips to connect your switch to your

Gemma M0!

Feather M0 Express and Feather M4 Express

D5 is labeled "5" and connected to the blue wire on the

board. D13 is labeled "#13" and is located next to the

USB micro port.

To use D5, comment out the current pin setup line, and

uncomment the line labeled for Feather M0 Express.

See the details above!

ItsyBitsy M0 Express and ItsyBitsy M4 Express

D2 is labeled "2", located between the "MISO" and "EN"

labels, and is connected to the blue wire on the board.

D13 is located next to the reset button between the "3"

and "4" labels on the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 103 of 199

https://learn.adafruit.com/assets/51506
https://learn.adafruit.com/assets/51502
https://learn.adafruit.com/assets/51503

Metro M0 Express and Metro M4 Express

D2 is located near the top left corner, and is connected

to the blue wire. D13 is labeled "L" and is located next to

the USB micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitalInOut page in Read the
Docs (https://adafru.it/C4c).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 104 of 199

https://learn.adafruit.com/assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

CircuitPython Analog In

This example shows you how you can read the analog voltage on the A1 pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

Creating the analog input

analog1in = AnalogIn(board.A1)

Creates an object and connects the object to A1 as an analog input.

get_voltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to 65535
(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling get_voltage on our analog object.
Connect to the serial console to see the results.

CircuitPython AnalogIn Demo
import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print((get_voltage(analog_in),))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 105 of 199

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial console, try touching a wire from
A1 to the GND pin or 3Vo pin to see the voltage change.

You can also add a potentiometer to control the voltage changes. From the potentiometer to the board, connect the
left pin to ground, the middle pin to A1, and the right pin to 3V. If you're using Mu editor, you can see the changes as
you rotate the potentiometer on the plotter like in the image above! (Click the Plotter icon at the top of the window to
open the plotter.)

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the potentiometer, and provides more
information about analog pins on your board!

When you turn the knob of the potentiometer, the wiper rotates left and right, increasing or decreasing the
resistance. This, in turn, changes the analog voltage level that will be read by your board on A1.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 106 of 199

Circuit Playground Express

A1 is located on the right side of the board. There are

multiple ground and 3V pads (pins).

Your board has 7 analog pins that can be used for this

purpose. For the full list, see the pinout

page (https://adafru.it/AM9) on the main guide.

Trinket M0

A1 is labeled as 2! It's located between "1~" and "3V" on

the same side of the board as the little red LED. Ground

is located on the opposite side of the board. 3V is

located next to 2, on the same end of the board as the

reset button.

You have 5 analog pins you can use. For the full list, see

the pinouts page (https://adafru.it/AMd) on the main

guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 107 of 199

https://learn.adafruit.com/assets/51607
file:///adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com/assets/51618
file:///adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma M0

A1 is located near the top of the board of the board to

the left side of the USB Micro port. Ground is on the

other side of the USB port from A1. 3V is located to the

left side of the battery connector on the bottom of the

board.

Your board has 3 analog pins. For the full list, see the

pinout page (https://adafru.it/AMa) on the main guide.

Feather M0 Express and Feather M4 Express

A1 is located along the edge opposite the battery

connector. There are multiple ground pins. 3V is located

along the same edge as A1, and is next to the reset

button.

Your board has 6 analog pins you can use. For the full

list, see the pinouts page (https://adafru.it/AMc) on the

main guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 108 of 199

https://learn.adafruit.com/assets/51611
file:///adafruit-gemma-m0/pinouts
https://learn.adafruit.com/assets/51616
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts

ItsyBitsy M0 Express and ItsyBitsy M4 Express

A1 is located in the middle of the board, near the "A" in

"Adafruit". Ground is labled "G" and is located next to

"BAT", near the USB Micro port. 3V is found on the

opposite side of the USB port from Ground, next to RST.

You have 6 analog pins you can use. For a full list, see

the pinouts page (https://adafru.it/BMg) on the main

guide.

Metro M0 Express and Metro M4 Express

A1 is located on the same side of the board as the barrel

jack. There are multiple ground pins available. 3V is

labeled "3.3" and is located in the center of the board

on the same side as the barrel jack (and as A1).

Your Metro M0 Express board has 6 analog pins you

can use. For the full list, see the pinouts

page (https://adafru.it/AMb) on the main guide.

Your Metro M4 Express board has 6 analog pins you

can use. For the full list, see the pinouts

page (https://adafru.it/B1O) on the main guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 109 of 199

https://learn.adafruit.com/assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts
https://learn.adafruit.com/assets/52733
file:///adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///adafruit-metro-m4-express-featuring-atsamd51/pinouts

CircuitPython Analog Out

This example shows you how you can set the DAC (true analog output) on pin A0.

Copy and paste the code into code.py using your favorite editor, and save the file.

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to A0, the only DAC pin available on both the M0 and the M4
boards. (The M4 has two, A0 and A1.)

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a resolution of 0.0032 Volts per bit.
To allow CircuitPython to be general-purpose enough that it can be used with chips with anything from 8 to 16-bit
DACs, the DAC takes a 16-bit value and divides it down internally.

For example, writing 0 will be the same as setting it to 0 - 0 Volts out.

Writing 5000 is the same as setting it to 5000 / 64 = 78, and 78 / 1024 * 3.3V = 0.25V output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to 65535, but increments 64 at a
time so it ends up clicking up one bit for each of the 10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC isn't good for audio outputs as-
is.

Express boards like the Circuit Playground Express, Metro M0 Express, ItsyBitsy M0 Express, ItsyBitsy M4 Express,
Metro M4 Express, Feather M4 Express, or Feather M0 Express have more code space and can perform audio
playback capabilities via the DAC. Gemma M0 and Trinket M0 cannot!

A0 is the only true analog output on the M0 boards. No other pins do true analog output!

CircuitPython IO demo - analog output
import board
from analogio import AnalogOut

analog_out = AnalogOut(board.A0)

while True:
 # Count up from 0 to 65535, with 64 increment
 # which ends up corresponding to the DAC's 10-bit range
 for i in range(0, 65535, 64):
 analog_out.value = i

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 110 of 199

Check out the Audio Out section of this guide (https://adafru.it/BRj) for examples!

Find the pin

Use the diagrams below to find the A0 pin marked with a magenta arrow!

Circuit Playground Express

A0 is located between VOUT and A1 near the battery

port.

Trinket M0

A0 is labeled "1~" on Trinket! A0 is located between "0"

and "2" towards the middle of the board on the same

side as the red LED.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 111 of 199

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://learn.adafruit.com/assets/51696
https://learn.adafruit.com/assets/51697

Gemma M0

A0 is located in the middle of the right side of the board

next to the On/Off switch.

Feather M0 Express

A0 is located between GND and A1 on the opposite side

of the board from the battery connector, towards the

end with the Reset button.

Feather M4 Express

A0 is located between GND and A1 on the opposite side

of the board from the battery connector, towards the

end with the Reset button, and the pin pad has left and

right white parenthesis markings around it

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 112 of 199

https://learn.adafruit.com/assets/51698
https://learn.adafruit.com/assets/51699
https://learn.adafruit.com/assets/57531

ItsyBitsy M0 Express

A0 is located between VHI and A1, near the "A" in

"Adafruit", and the pin pad has left and right white

parenthesis markings around it.

ItsyBitsy M4 Express

A0 is located between VHI and A1, and the pin pad has

left and right white parenthesis markings around it.

Metro M0 Express

A0 is between VIN and A1, and is located along the

same side of the board as the barrel jack adapter

towards the middle of the headers found on that side of

the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 113 of 199

https://learn.adafruit.com/assets/51700
https://learn.adafruit.com/assets/57532
https://learn.adafruit.com/assets/51701

Metro M4 Express

A0 is between VIN and A1, and is located along the

same side of the board as the barrel jack adapter

towards the middle of the headers found on that side of

the board.

On the Metro M4 Express, there are TWO true analog

outputs: A0 and A1.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 114 of 199

https://learn.adafruit.com/assets/53100

CircuitPython PWM

Your board has pulseio support, which means you can PWM LEDs, control servos, beep piezos, and manage "pulse
train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an A0 pin which is 'true' analog out and
does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

Create a PWM Output

led = pulseio.PWMOut(board.D13, frequency=5000, duty_cycle=0)

Since we're using the onboard LED, we'll call the object led , use pulseio.PWMOut to create the output and pass in the
D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50, it PWMs the LED brightness up,
and when the range is above 50, it PWMs the brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of time. Otherwise it happens too quickly
for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you want to make some beeps with a
piezo, you'll need to vary the frequency.

The following example uses pulseio to make a series of tones on a piezo.

To use with any of the M0 boards, no changes to the following code are needed.

import time
import board
import pulseio

led = pulseio.PWMOut(board.D13, frequency=5000, duty_cycle=0)

while True:
 for i in range(100):
 # PWM LED up and down
 if i < 50:
 led.duty_cycle = int(i * 2 * 65535 / 100) # Up
 else:
 led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
 time.sleep(0.01)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 115 of 199

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the piezo

= pulseio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True) line and uncomment the piezo =

pulseio.PWMOut(board.A1, duty_cycle=0, frequency=440, variable_frequency=True) line. A2 is not a supported PWM pin on
the M4 boards!

If you have simpleio library loaded into your /lib folder on your board, we have a nice little helper that makes a tone for
you on a piezo with a single command.

To use with any of the M0 boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the
simpleio.tone(board.A2, f, 0.25) line and uncomment the simpleio.tone(board.A1, f, 0.25) line. A2 is not a supported PWM
pin on the M4 boards!

As you can see, it's much simpler!

Wire it up

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.

import time
import board
import pulseio

For the M0 boards:
piezo = pulseio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True)

For the M4 boards:
piezo = pulseio.PWMOut(board.A1, duty_cycle=0, frequency=440, variable_frequency=True)

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 piezo.frequency = f
 piezo.duty_cycle = 65536 // 2 # On 50%
 time.sleep(0.25) # On for 1/4 second
 piezo.duty_cycle = 0 # Off
 time.sleep(0.05) # Pause between notes
 time.sleep(0.5)

import time
import board
import simpleio

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 # For the M0 boards:
 simpleio.tone(board.A2, f, 0.25) # on for 1/4 second
 # For the M4 boards:
 # simpleio.tone(board.A1, f, 0.25) # on for 1/4 second
 time.sleep(0.05) # pause between notes
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 116 of 199

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo to pin A2 on the M0 boards or A1
on the M4 boards, and the other leg to ground. It doesn't matter which leg is connected to which pin. They're
interchangeable!

Circuit Playground Express

Use alligator clips to attach A2 and any one of the GND

to different legs of the piezo.

CPX has PWM on the following pins: A1, A2, A3, A6, RX,

LIGHT, A8, TEMPERATURE, A9, BUTTON_B, D5,

SLIDE_SWITCH, D7, D13, REMOTEIN, IR_RX,

REMOTEOUT, IR_TX, IR_PROXIMITY,

MICROPHONE_CLOCK, MICROPHONE_DATA,

ACCELEROMETER_INTERRUPT,

ACCELEROMETER_SDA, ACCELEROMETER_SCL,

SPEAKER_ENABLE.

There is NO PWM on: A0, SPEAKER, A4, SCL, A5, SDA,

A7, TX, BUTTON_A, D4, NEOPIXEL, D8, SCK, MOSI,

MISO, FLASH_CS.

Trinket M0

Note: A2 on Trinket is also labeled Digital "0"!

Use jumper wires to connect GND and D0 to different

legs of the piezo.

Trinket has PWM available on the following pins: D0, A2,

SDA, D2, A1, SCL, MISO, D4, A4, TX, MOSI, D3, A3, RX,

SCK, D13, APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, D1.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 117 of 199

https://learn.adafruit.com/assets/51861
https://learn.adafruit.com/assets/51864

Gemma M0

Use alligator clips to attach A2 and GND to different legs

on the piezo.

Gemma has PWM available on the following pins: A1,

D2, RX, SCL, A2, D0, TX, SDA, L, D13, APA102_MOSI,

APA102_SCK.

There is NO PWM on: A0, D1.

Feather M0 Express

Use jumper wires to attach A2 and one of the two GND

to different legs of the piezo.

Feather M0 Express has PWM on the following pins: A2,

A3, A4, SCK, MOSI, MISO, D0, RX, D1, TX, SDA, SCL, D5,

D6, D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: A0, A1, A5.

Feather M4 Express

Use jumper wires to attach A1 and one of the two GND

to different legs of the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

Feather M4 Express has PWM on the following pins: A1,

A3, SCK, D0, RX, D1, TX, SDA, SCL, D4, D5, D6, D9, D10,

D11, D12, D13.

There is NO PWM on: A0, A2, A4, A5, MOSI, MISO.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 118 of 199

https://learn.adafruit.com/assets/51866
https://learn.adafruit.com/assets/51868
https://learn.adafruit.com/assets/57590

ItsyBitsy M0 Express

Use jumper wires to attach A2 and G to different legs of

the piezo.

ItsyBitsy M0 Express has PWM on the following pins: D0,

RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11,

D12, D13, L, A2, A3, A4, MOSI, MISO, SCK, SCL, SDA,

APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, A1, A5.

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to different legs of

the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

ItsyBitsy M0 Express has PWM on the following pins: A1,

D0, RX, D1, TX, D2, D4, D5, D7, D9, D10, D11, D12, D13,

SDA, SCL.

There is NO PWM on: A2, A3, A4, A5, D3, SCK, MOSI,

MISO.

Metro M0 Express

Use jumper wires to connect A2 and any one of the

GND to different legs on the piezo.

Metro M0 Express has PWM on the following pins: A2,

A3, A4, D0, RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9,

D10, D11, D12, D13, SDA, SCL, NEOPIXEL, SCK, MOSI,

MISO.

There is NO PWM on: A0, A1, A5, FLASH_CS.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 119 of 199

https://learn.adafruit.com/assets/51870
https://learn.adafruit.com/assets/57591
https://learn.adafruit.com/assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any one of the GND

to different legs on the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

Metro M4 Express has PWM on: A1, A5, D0, RX, D1, TX,

D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, SDA,

SCK, MOSI, MISO

There is No PWM on: A0, A2, A3, A4, SCL, AREF,

NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script! It attempts to setup PWM on
every pin available, and lets you know which ones work and which ones don't. Check it out!

import board
import pulseio

for pin_name in dir(board):
 pin = getattr(board, pin_name)
 try:
 p = pulseio.PWMOut(pin)
 p.deinit()
 print("PWM on:", pin_name) # Prints the valid, PWM-capable pins!
 except ValueError: # This is the error returned when the pin is invalid.
 print("No PWM on:", pin_name) # Prints the invalid pins.
 except RuntimeError: # Timer conflict error.
 print("Timers in use:", pin_name) # Prints the timer conflict pins.
 except TypeError: # Error returned when checking a non-pin object in dir(board).
 pass # Passes over non-pin objects in dir(board).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 120 of 199

https://learn.adafruit.com/assets/53102

CircuitPython Servo

In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio calls to set the
frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely! adafruit_motor is a library so be sure
to grab it from the library bundle if you have not yet (https://adafru.it/zdx)! If you need help installing the library, check
out the CircuitPython Libraries page (https://adafru.it/ABU).

Servo Wiring

Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than that, you'll need
an external battery pack. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1 or A2 but you can use any PWM-
capable pin.

For example, to wire a servo to Trinket, connect the

ground wire to GND, the power wire to USB, and the

signal wire to 0.

Remember, A2 on Trinket is labeled "0".

Servos will only work on PWM-capable pins! Check your board details to verify which pins have PWM outputs.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 121 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/assets/51927

For Gemma, use jumper wire alligator clips to connect

the ground wire to GND, the power wire to VOUT, and

the signal wire to A2.

For Circuit Playground Express, use jumper wire

alligator clips to connect the ground wire to GND, the

power wire to VOUT, and the signal wire to A2.

For boards like Feather M0 Express, ItsyBitsy M0

Express and Metro M0 Express, connect the ground

wire to any GND, the power wire to USB or 5V, and the

signal wire to A2.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 122 of 199

https://learn.adafruit.com/assets/51928
https://learn.adafruit.com/assets/51991
https://learn.adafruit.com/assets/51929

For the Metro M4 Express, ItsyBitsy M4 Express and

the Feather M4 Express, connect the ground wire to

any G or GND, the power wire to USB or 5V, and the

signal wire to A1.

Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180 degrees and back:

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider than
the official 1-2ms pulse widths. If you have a servo that has a different range you can initialize the servo object with a
different min_pulse and max_pulse . For example:

servo = adafruit_motor.servo.Servo(pwm, min_pulse = 0.5, max_pulse = 2.5)

For more detailed information on using servos with CircuitPython, check out the CircuitPython section of the servo
guide (https://adafru.it/Bei)!

import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.
my_servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)
 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 123 of 199

https://learn.adafruit.com/assets/53104
file:///using-servos-with-circuitpython/circuitpython

CircuitPython Cap Touch

Every CircuitPython designed M0 board has capacitive touch capabilities. This means each board has at least one pin
that works as an input when you touch it! The capacitive touch is done completely in hardware, so no external
resistors, capacitors or ICs required. Which is really nice!

This example will show you how to use a capacitive touch pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

Create the Touch Input

First, we assign the variable touch_pad to a pin. The example uses A0, so we assign touch_pad = board.A0 . You can
choose any touch capable pin from the list below if you'd like to use a different pin. Then we create the touch object,
name it touch and attach it to touch_pad .

To use with Circuit Playground Express, comment out touch_pad = board.A0 and uncomment touch_pad = board.A1 .

Main Loop

Next, we create a loop that checks to see if the pin is touched. If it is, it prints to the serial console. Connect to the
serial console to see the printed results when you touch the pin!

No extra hardware is required, because you can touch the pin directly. However, you may want to attach alligator clips
or copper tape to metallic or conductive objects. Try metal flatware, fruit or other foods, liquids, aluminum foil, or other
items lying around your desk!

Capacitive touch is not supported on the M4 Express boards.

import time

import board
import touchio

touch_pad = board.A0 # Will not work for Circuit Playground Express!
touch_pad = board.A1 # For Circuit Playground Express

touch = touchio.TouchIn(touch_pad)

while True:
 if touch.value:
 print("Touched!")
 time.sleep(0.05)

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 124 of 199

You may need to reload your code or restart your board after changing the attached item because the capacitive touch
code "calibrates" based on what it sees when it first starts up. So if you get too many touch responses or not enough,
reload your code through the serial console or eject the board and tap the reset button!

Find the Pin(s)

Your board may have more touch capable pins beyond A0. We've included a list below that helps you find A0 (or A1 in
the case of CPX) for this example, identified by the magenta arrow. This list also includes information about any other
pins that work for touch on each board!

To use the other pins, simply change the number in A0 to the pin you want to use. For example, if you want to use A3
instead, your code would start with touch_pad = board.A3 .

If you would like to use more than one pin at the same time, your code may look like the following. If needed, you can
modify this code to include pins that work for your board.

CircuitPython Demo - Cap Touch Multiple Pins
Example does NOT work with Trinket M0!

import time

import board
import touchio

touch_A1 = touchio.TouchIn(board.A1) # Not a touch pin on Trinket M0!
touch_A2 = touchio.TouchIn(board.A2) # Not a touch pin on Trinket M0!

while True:
 if touch_A1.value:
 print("Touched A1!")
 if touch_A2.value:
 print("Touched A2!")
 time.sleep(0.05)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 125 of 199

Use the list below to find out what pins you can use with your board. Then, try adding them to your code and have fun!

Trinket M0

There are three touch capable pins on Trinket: A0, A3,

and A4.

Remember, A0 is labeled "1~" on Trinket M0!

Gemma M0

There are three pins on Gemma, in the form of alligator-

clip-friendly pads, that work for touch input: A0, A1 and

A2.

This example does NOT work for Trinket M0! You must change the pins to use with this board. This example
only works with Gemma, Circuit Playground Express, Feather M0 Express, Metro M0 Express and ItsyBitsy
M0 Express.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 126 of 199

https://learn.adafruit.com/assets/51773
https://learn.adafruit.com/assets/51774

Feather M0 Express

There are 6 pins on the Feather that have touch

capability: A0 - A5.

ItsyBitsy M0 Express

There are 6 pins on the ItsyBitsy that have touch

capability: A0 - A5.

Metro M0 Express

There are 6 pins on the Metro that have touch

capability: A0 - A5.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 127 of 199

https://learn.adafruit.com/assets/51775
https://learn.adafruit.com/assets/51776
https://learn.adafruit.com/assets/51777

Circuit Playground Express

Circuit Playground Express has seven touch capable

pins! You have A1 - A7 available, in the form of alligator-

clip-friendly pads. See the CPX guide Cap Touch

section (https://adafru.it/ANC) for more information on

using these pads for touch!

Remember: A0 does NOT have touch capabilities on

CPX.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 128 of 199

https://learn.adafruit.com/assets/51993
file:///adafruit-circuit-playground-express/adafruit2-circuitpython-cap-touch

CircuitPython Internal RGB LED

Every board has a built in RGB LED. You can use CircuitPython to control the color and brightness of this LED. There
are two different types of internal RGB LEDs: DotStar (https://adafru.it/kDg) and NeoPixel (https://adafru.it/Bej). This
section covers both and explains which boards have which LED.

The first example will show you how to change the color and brightness of the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file.

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a NeoPixel, there is only one pin
necessary, and we have called it NEOPIXEL for easier use. In the case of a DotStar, however, there are two pins
necessary, and so we use the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the single
onboard LED, the last thing we do is tell it that there's only 1 LED!

import time
import board

For Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express
import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express, and Circuit Playground Express
import neopixel
led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:
 led[0] = (255, 0, 0)
 time.sleep(0.5)
 led[0] = (0, 255, 0)
 time.sleep(0.5)
 led[0] = (0, 0, 255)
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 129 of 199

file:///adafruit-dotstar-leds/overview
file:///adafruit-neopixel-uberguide/the-magic-of-neopixels

Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express each have an onboard Dotstar LED, so no
changes are needed to the initial version of the example.

Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4 Express, and Circuit Playground Express
each have an onboard NeoPixel LED, so you must comment out import adafruit_dotstar and led =

adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and uncomment import neopixel and led =

neopixel.NeoPixel(board.NEOPIXEL, 1) .

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with a number between 0 and 1 ,
representative of a percent from 0% to 100%. So, led.brightness = (0.3) sets the LED brightness to 30%. The default
brightness is 1 or 100%, and at it's maximum, the LED is blindingly bright! You can set it lower if you choose.

Main Loop

LED colors are set using a combination of red, green, and blue, in the form of an (R, G, B) tuple. Each member of the
tuple is set to a number between 0 and 255 that determines the amount of each color present. Red, green and blue in
different combinations can create all the colors in the rainbow! So, for example, to set the LED to red, the tuple would
be (255, 0, 0), which has the maximum level of red, and no green or blue. Green would be (0, 255, 0), etc. For the
colors between, you set a combination, such as cyan which is (0, 255, 255), with equal amounts of green and blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0) , then green using (0, 255, 0) , and finally blue
using (0, 0, 255) . Next, we give it a time.sleep() so it stays each color for a period of time. We chose time.sleep(0.5) , or
half a second. Without the time.sleep() it'll flash really quickly and the colors will be difficult to see!

Note that we set led[0] . This means the first, and in the case of most of the boards, the only LED. In CircuitPython,
counting starts at 0. So the first of any object, list, etc will be 0 !

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 130 of 199

Try changing the numbers in the tuples to change your LED to any color of the rainbow. Or, you can add more lines
with different color tuples to add more colors to the sequence. Always add the time.sleep() , but try changing the
amount of time to create different cycle animations!

Making Rainbows (Because Who Doesn't Love 'Em!)

Coding a rainbow effect involves a little math and a helper function called wheel . For details about how wheel works,
see this explanation here (https://adafru.it/Bek)!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 131 of 199

file:///hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#wheel-explained

The last example shows how to do a rainbow animation on the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file. Remember to comment and
uncomment the right lines for the board you're using, as explained above (https://adafru.it/Bel).

We add the wheel function in after setup but before our main loop.

And right before our main loop, we assign the variable i = 0 , so it's ready for use inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again repeatedly. We use this value to
cycle wheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a higher number for a slower rainbow or a
lower number for a faster one!

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0] . This means it turns on all the LEDs, which in the current code is only
one. So why bother with fill ? Well, you may have a Circuit Playground Express, which as you can see has TEN
NeoPixel LEDs built in. The examples so far have only turned on the first one. If you'd like to do a rainbow on all ten
LEDs, change the 1 in:

import time
import board

For Trinket M0, Gemma M0, ItsyBitsy M0 Express and ItsyBitsy M4 Express
import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express and Circuit Playground Express
import neopixel
led = neopixel.NeoPixel(board.NEOPIXEL, 1)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return 0, 0, 0
 if pos < 85:
 return int(255 - pos * 3), int(pos * 3), 0
 if pos < 170:
 pos -= 85
 return 0, int(255 - pos * 3), int(pos * 3)
 pos -= 170
 return int(pos * 3), 0, int(255 - (pos * 3))

led.brightness = 0.3

i = 0
while True:
 i = (i + 1) % 256 # run from 0 to 255
 led.fill(wheel(i))
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 132 of 199

file:///circuitpython-essentials/circuitpython-internal-rgb-led#create-the-led

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 so it reads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch the rainbow go! You can make
the same 1 to 10 change to the previous examples as well, and use led.fill to light up all the LEDs in the colors you
chose! For more details, check out the NeoPixel section of the CPX guide (https://adafru.it/Bem)!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 133 of 199

file:///adafruit-circuit-playground-express/circuitpython-neopixel

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded RGB lights
have the controller inside the LED, so you just push the RGB data and the LEDs do all the work for you. They're a
perfect match for CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs
without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the neopixel.mpy library if you don't already have it in your /lib folder! You can get it from the CircuitPython
Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython Libraries
page (https://adafru.it/ABU).

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA INPUT or DIN side. Plugging into
the DATA OUT or DOUT side is a common mistake! The connections are labeled and some formats have arrows to
indicate the direction the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 134 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

If the power to the NeoPixels is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach 9V and this
can destroy your NeoPixels!

Note that the wire ordering on your NeoPixel strip or shape may not exactly match the diagram above. Check
the markings to verify which pin is DIN, 5V and GND

CircuitPython demo - NeoPixel
import time
import board
import neopixel

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 135 of 199

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required arguments and two optional
arguments. You are required to set the pin you're using to drive your NeoPixels and provide the number of pixels you
intend to use. You can optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the variable pixel_pin to the pin you'd like
to use, in our case board.A1 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this
example, we're using a strip of 8 .

We've chosen to set brightness=0.3 , or 30%.

 time.sleep(wait)
 pixels.show()
 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
 pixels.fill(RED)
 pixels.show()
 # Increase or decrease to change the speed of the solid color change.
 time.sleep(1)
 pixels.fill(GREEN)
 pixels.show()
 time.sleep(1)
 pixels.fill(BLUE)
 pixels.show()
 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase
 color_chase(YELLOW, 0.1)
 color_chase(GREEN, 0.1)
 color_chase(CYAN, 0.1)
 color_chase(BLUE, 0.1)
 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 136 of 199

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is the
default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to
set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data to
your pixels. This makes your code more complicated, but it can make your LED animations faster!

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects found in this code. First is wheel()

which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color_chase() which requires you
to provide a color and the amount of time in seconds you'd like between each step of the chase. Next we have
rainbow_cycle() , which requires you to provide the mount of time in seconds you'd like the animation to take. Last,
we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the code,
as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section of the
CircuitPython Internal RGB LED page (https://adafru.it/Bel).

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every NeoPixel we're using to red,
green and blue for 1 second each. Then we call color_chase() , one time for each color on our list with 0.1 second
delay between setting each subsequent LED the same color during the chase. Last we call rainbow_cycle(0) , which
means the animation is as fast as it can be. Increase both of those numbers to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to complete.

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and blue. They're also available in
RGBW, which includes four LEDs, red, green, blue and white. The code for RGBW NeoPixels is a little bit different than
RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up and the LEDs will be the incorrect
color even though they may appear to be changing. This is because NeoPixels require a piece of information for each
available color (red, green, blue and possibly white).

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require FOUR pieces of information to work.
So when you create the LED object for RGBW LEDs, you'll include bpp=4 , which sets bits-per-pixel to four (the four
pieces of information!).

Then, you must include an extra number in every color tuple you create. For example, red will be (255, 0, 0, 0) . This is
how you send the fourth piece of information. Check out the example below to see how our NeoPixel code looks for
using with RGBW LEDs!

We have a ton more information on general purpose NeoPixel know-how at our NeoPixel UberGuide
https://learn.adafruit.com/adafruit-neopixel-uberguide

CircuitPython demo - NeoPixel RGBW

import time
import board
import neopixel

pixel_pin = board.A1

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 137 of 199

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False,
 pixel_order=(1, 0, 2, 3))

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3, 0)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3, 0)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color
 time.sleep(wait)
 pixels.show()
 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0, 0)
YELLOW = (255, 150, 0, 0)
GREEN = (0, 255, 0, 0)
CYAN = (0, 255, 255, 0)
BLUE = (0, 0, 255, 0)
PURPLE = (180, 0, 255, 0)

while True:
 pixels.fill(RED)
 pixels.show()
 # Increase or decrease to change the speed of the solid color change.
 time.sleep(1)
 pixels.fill(GREEN)
 pixels.show()
 time.sleep(1)
 pixels.fill(BLUE)
 pixels.show()
 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase
 color_chase(YELLOW, 0.1)
 color_chase(GREEN, 0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 138 of 199

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the Docs (https://adafru.it/C5m).

 color_chase(CYAN, 0.1)
 color_chase(BLUE, 0.1)
 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 139 of 199

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much faster with
hardware SPI and they have a faster PWM cycle so they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will automatically switch over to
hardware SPI. If you use hardware SPI then you'll get 4 MHz clock rate (that would mean updating a 64 pixel strand in
about 500uS - that's 0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz, 1000 times as
slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs without.
That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA INPUT or DI and CLOCK INPUT or CI
side. Plugging into the DATA OUT/DO or CLOCK OUT/CO side is a common mistake! The connections are labeled and
some formats have arrows to indicate the direction the data must flow. Always verify your wiring with a visual
inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach 9V and this
can destroy your DotStars!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 140 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

Note that the wire ordering on your DotStar strip or shape may not exactly match the diagram above. Check
the markings to verify which pin is DIN, CIN, 5V and GND

CircuitPython demo - Dotstar
import time
import adafruit_dotstar
import board

num_pixels = 30
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_fill(color, wait):
 pixels.fill(color)
 pixels.show()
 time.sleep(wait)

def slice_alternating(wait):
 pixels[::2] = [RED] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [ORANGE] * (num_pixels // 2)
 pixels.show()

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 141 of 199

 time.sleep(wait)
 pixels[::2] = [YELLOW] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [GREEN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [TEAL] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [CYAN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [BLUE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [PURPLE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [MAGENTA] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [WHITE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)

def slice_rainbow(wait):
 pixels[::6] = [RED] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[1::6] = [ORANGE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[2::6] = [YELLOW] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[3::6] = [GREEN] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[4::6] = [BLUE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[5::6] = [PURPLE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
ORANGE = (255, 40, 0)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 142 of 199

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required arguments and two optional
arguments. You are required to set the pin you're using for data, set the pin you'll be using for clock, and provide the
number of pixels you intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To set the pins, include the pin
names at the beginning of the object creation, in this case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this
example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is the
default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to
set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data to

ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:
 # Change this number to change how long it stays on each solid color.
 color_fill(RED, 0.5)
 color_fill(YELLOW, 0.5)
 color_fill(ORANGE, 0.5)
 color_fill(GREEN, 0.5)
 color_fill(TEAL, 0.5)
 color_fill(CYAN, 0.5)
 color_fill(BLUE, 0.5)
 color_fill(PURPLE, 0.5)
 color_fill(MAGENTA, 0.5)
 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.
 rainbow_cycle(0)

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars respond faster when using
hardware SPI!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 143 of 199

your pixels. This makes your code more complicated, but it can make your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color_fill() which
requires you to provide a color and the length of time you'd like it to be displayed. Next, are slice_alternating() ,
slice_rainbow() , and rainbow_cycle() which require you to provide the amount of time in seconds you'd between each
step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the
code, as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section
of the CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use math to light up LEDs in repeating
patterns. slice_alternating() first lights up the even number LEDs and then the odd number LEDs and repeats this back
and forth. slice_rainbow() lights up every sixth LED with one of the six rainbow colors until the strip is filled. Both use our
handy color variables. This slice code only works when the total number of LEDs is divisible by the slice size, in our
case 2 and 6. DotStars come in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that you
cut them into different sized strips, the code in this example may not work without modification. However, as long as
you provide a total number of LEDs that is divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and sets each to hold for 0.5 seconds. You
can change this number to change how fast each color is displayed. Next, we call slice_alternating(0.1) , which means
there's a 0.1 second delay between each change in the animation. Then, we fill the strip white to create a clean
backdrop for the rainbow to display. Then, we call slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we
call rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or decrease either of these numbers to
speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're using hardware SPI. On some of
the boards, there are HW SPI pins directly available in the form of MOSI and SCK. However, hardware SPI is available
on more than just those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on the board you're using, copy and
paste the code into code.py using your favorite editor, and save the file. Then connect to the serial console to see the
results.

To check if other pin combinations have hardware SPI, change the pin names on the line reading: if

is_hardware_SPI(board.A1, board.A2): to the pins you want to use. Then, check the results in the serial console. Super
simple!

We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide
https://learn.adafruit.com/adafruit-dotstar-leds

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 144 of 199

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the Docs (https://adafru.it/C4d).

import board
import busio

def is_hardware_spi(clock_pin, data_pin):
 try:
 p = busio.SPI(clock_pin, data_pin)
 p.deinit()
 return True
 except ValueError:
 return False

Provide the two pins you intend to use.
if is_hardware_spi(board.A1, board.A2):
 print("This pin combination is hardware SPI!")
else:
 print("This pin combination isn't hardware SPI.")

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 145 of 199

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPSs, some sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a GPS! Note that the GPS will give
you UART data without getting a fix on your location. You can use this example right from your desk! You'll have data
to read, it simply won't include your actual location.

You'll need the adafruit_bus_device library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Copy and paste the code into code.py using your favorite editor, and save the file.

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and board.RX , and we set the
baudrate=9600 . While these pins are labeled on most of the boards, be aware that RX and TX are not labeled on
Gemma, and are labeled on the bottom of Trinket. See the diagrams below for help with finding the correct pins on
your board.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It will
return a byte array type object if anything was received already. Note it will always return immediately because there is
an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

CircuitPython Demo - USB/Serial echo

import board
import busio
import digitalio

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 # print(data) # this is a bytearray type

 if data is not None:
 led.value = True

 # convert bytearray to string
 data_string = ''.join([chr(b) for b in data])
 print(data_string, end="")

 led.value = False

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 146 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora Ultimate GPS
Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these diagrams, the wire colors match
the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the GPS and your board.
The blue wire connects from TX on the GPS to RX on your board.
The white wire connects from RX on the GPS to TX on your board.

For more information about the data you're reading and the Ultimate GPS, check out the Ultimate GPS guide:
https://learn.adafruit.com/adafruit-ultimate-gps

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 147 of 199

https://learn.adafruit.com/adafruit-ultimate-gps

Check out the list below for a diagram of your specific board!

Circuit Playground Express

Connect 3.3v on your CPX to 3.3v on your GPS.

Connect GND on your CPX to GND on your GPS.

Connect RX/A6 on your CPX to TX on your GPS.

Connect TX/A7 on your CPX to RX on your GPS.

Trinket M0

Connect USB on the Trinket to VIN on the GPS.

Connect Gnd on the Trinket to GND on the GPS.

Connect D3 on the Trinket to TX on the GPS.

Connect D4 on the Trinket to RX on the GPS.

Watch out! A common mixup with UART serial is that RX on one board connects to TX on the other! However,
sometimes boards have RX labeled TX and vice versa. So, you'll want to start with RX connected to TX, but if
that doesn't work, try the other way around!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 148 of 199

https://learn.adafruit.com/assets/52309
https://learn.adafruit.com/assets/52310

Gemma M0

Connect 3vo on the Gemma to 3.3v on the GPS.

Connect GND on the Gemma to GND on the GPS.

Connect A1/D2 on the Gemma to TX on the GPS.

Connect A2/D0 on the Gemma to RX on the GPS.

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the GPS.

Connect GND on the Feather to GND on the GPS.

Connect RX on the Feather to TX on the GPS.

Connect TX on the Feather to RX on the GPS.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 149 of 199

https://learn.adafruit.com/assets/52311
https://learn.adafruit.com/assets/52312

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the GPS

Connect G on the ItsyBitsy to GND on the GPS.

Connect RX/0 on the ItsyBitsy to TX on the GPS.

Connect TX/1 on the ItsyBitsy to RX on the GPS.

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the GPS.

Connect GND on the Metro to GND on the GPS.

Connect RX/D0 on the Metro to TX on the GPS.

Connect TX/D1 on the Metro to RX on the GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART. Compare this to some chips like the
ESP8266 with fixed UART pins. The good news is you can use many but not all pins. Given the large number of SAMD
boards we have, its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you want some other
setup, or multiple UARTs, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of RX and TX pin pairs that you can use.

These are the results from a Trinket M0, your output may vary and it might be very long. For more details about UARTs
and SERCOMs check out our detailed guide here (https://adafru.it/Ben)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 150 of 199

https://learn.adafruit.com/assets/52324
https://learn.adafruit.com/assets/52328
file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both busio.UART and busio.I2C , you must create the UART object first, e.g.:

>>> import board,busio
>>> uart = busio.UART(board.TX, board.RX)
>>> i2c = busio.I2C(board.SCL, board.SDA)

Creating busio.I2C first does not work:

import board
import busio
from microcontroller import Pin

def is_hardware_uart(tx, rx):
 try:
 p = busio.UART(tx, rx)
 p.deinit()
 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for tx_pin in get_unique_pins():
 for rx_pin in get_unique_pins():
 if rx_pin is tx_pin:
 continue
 else:
 if is_hardware_uart(tx_pin, rx_pin):
 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)
 else:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 151 of 199

>>> import board,busio
>>> i2c = busio.I2C(board.SCL, board.SDA)
>>> uart = busio.UART(board.TX, board.RX)
Traceback (most recent call last):
File "", line 1, in
ValueError: Invalid pins

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 152 of 199

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning it uses two connections for
transmitting and receiving data. There are many I2C devices available and they're really easy to use with CircuitPython.
We have libraries available for many I2C devices in the library bundle (https://adafru.it/uap). (If you don't see the sensor
you're looking for, keep checking back, more are being written all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected devices. Then we're going to learn
how to interact with an I2C device.

We'll be using the TSL2561, a common, low-cost light sensor. While the exact code we're running is specific to the
TSL2561 the overall process is the same for just about any I2C sensor or device.

You'll need the adafruit_tsl2561.mpy library and adafruit_bus_device library folder if you don't already have it in your
/lib folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the
library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2561 lux sensor Flora and breakout. The first thing you'll want to do is get the sensor
connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2561 to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora TSL2561 Lux
Sensor.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the TSL2561 Lux Sensor breakout board.

We've included diagrams show you how to connect the TSL2561 to your board. In these diagrams, the wire colors
match the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the TSL2561 and your board.
The yellow wire connects from SCL on the TSL2561 to SCL on your board.
The blue wire connects from SDA on the TSL2561 to SDA on your board.

Check out the list below for a diagram of your specific board!

Be aware that the Adafruit microcontroller boards do not have I2C pullup resistors built in! All of the Adafruit
breakouts do, but if you're building your own board or using a non-Adafruit breakout, you must add 2.2K-10K
ohm pullups on both SDA and SCL to the 3.3V.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 153 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Circuit Playground Express

Connect 3.3v on your CPX to 3.3v on your

TSL2561.

Connect GND on your CPX to GND on your

TSL2561.

Connect SCL/A4 on your CPX to SCL on your

TSL2561.

Connect SDL/A5 on your CPX to SDA on your

TSL2561.

Trinket M0

Connect USB on the Trinket to VIN on the

TSL2561.

Connect Gnd on the Trinket to GND on the

TSL2561.

Connect D2 on the Trinket to SCL on the TSL2561.

Connect D0 on the Trinket to SDA on the

TSL2561.

Gemma M0

Connect 3vo on the Gemma to 3V on the

TSL2561.

Connect GND on the Gemma to GND on the

TSL2561.

Connect A1/D2 on the Gemma to SCL on the

TSL2561.

Connect A2/D0 on the Gemma to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 154 of 199

https://learn.adafruit.com/assets/52413
https://learn.adafruit.com/assets/52414
https://learn.adafruit.com/assets/52415

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the

TSL2561.

Connect GND on the Feather to GND on the

TSL2561.

Connect SCL on the Feather to SCL on the

TSL2561.

Connect SDA on the Feather to SDA on the

TSL2561.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the

TSL2561

Connect G on the ItsyBitsy to GND on the

TSL2561.

Connect SCL on the ItsyBitsy to SCL on the

TSL2561.

Connect SDA on the ItsyBitsy to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 155 of 199

https://learn.adafruit.com/assets/57598
https://learn.adafruit.com/assets/52417

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the TSL2561.

Connect GND on the Metro to GND on the

TSL2561.

Connect SCL on the Metro to SCL on the TSL2561.

Connect SDA on the Metro to SDA on the

TSL2561.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's wired correctly. We're going to do an
I2C scan to see if the board is detected, and if it is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

First we create the i2c object and provide the I2C pins, board.SCL and board.SDA .

To be able to scan it, we need to lock the I2C down so the only thing accessing it is the code. So next we include a
loop that waits until I2C is locked and then continues on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically refers to addresses in hex form,
we've included this bit of code that formats the results into hex format: [hex(device_address) for device_address in

CircuitPython demo - I2C scan

import time

import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

while not i2c.try_lock():
 pass

while True:
 print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])
 time.sleep(2)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 156 of 199

https://learn.adafruit.com/assets/52419

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses. We've connected the TSL2561
which has a 7-bit I2C address of 0x39. The result for this sensor is I2C addresses found: ['0x39'] . If no addresses are
returned, refer back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out how to get the data from our
sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

This code begins the same way as the scan code. We've included the scan code so you have verification that your
sensor is wired up correctly and is detected. It prints the address once. After the scan, we unlock I2C with i2c_unlock()

so we can use the sensor for data.

We create our sensor object using the sensor library. We call it tsl2561 and provide it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we created. We add a
time.sleep(1.0) , so it only prints once per second. Connect to the serial console to see the results. Try shining a light on
it to see the results change!

CircuitPython Demo - I2C sensor

import time

import adafruit_tsl2561
import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

Lock the I2C device before we try to scan
while not i2c.try_lock():
 pass
Print the addresses found once
print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])

Unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
tsl2561 = adafruit_tsl2561.TSL2561(i2c)

Use the object to print the sensor readings
while True:
 print("Lux:", tsl2561.lux)
 time.sleep(1.0)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 157 of 199

Where's my I2C?

On the SAMD21, we have the flexibility of using a wide range of pins for I2C. Some chips, like the ESP8266 can use
any pins for I2C, using bitbangio. There's some other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD boards we have, its impossible
to guarantee anything other than the labeled 'SDA' and 'SCL'. So, if you want some other setup, or multiple I2C
interfaces, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of SCL and SDA pin pairs that you can use.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might be very long. For more details
about I2C and SERCOMs, check out our detailed guide here (https://adafru.it/Ben).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 158 of 199

file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is_hardware_I2C(scl, sda):
 try:
 p = busio.I2C(scl, sda)
 p.deinit()
 return True
 except ValueError:
 return False
 except RuntimeError:
 return True

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for scl_pin in get_unique_pins():
 for sda_pin in get_unique_pins():
 if scl_pin is sda_pin:
 continue
 else:
 if is_hardware_I2C(scl_pin, sda_pin):
 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)
 else:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 159 of 199

CircuitPython HID Keyboard and Mouse

One of the things we baked into CircuitPython is 'HID' (Human Interface Device) control - that means keyboard and
mouse capabilities. This means your CircuitPython board can act like a keyboard device and press key commands, or a
mouse and have it move the mouse pointer around and press buttons. This is really handy because even if you cannot
adapt your software to work with hardware, there's almost always a keyboard interface - so if you want to have a
capacitive touch interface for a game, say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator. First we'll go through an example
that uses pins on your board to emulate keyboard input. Then, we will show you how to wire up a joystick to act as a
mouse, and cover the code needed to make that happen.

You'll need the adafruit_hid library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

CircuitPython Keyboard Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - Keyboard emulator

import time

import board
import digitalio
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup
keypress_pins = [board.A1, board.A2]
Our array of key objects
key_pin_array = []
The Keycode sent for each button, will be paired with a control key
keys_pressed = [Keycode.A, "Hello World!\n"]
control_key = Keycode.SHIFT

The keyboard object!
time.sleep(1) # Sleep for a bit to avoid a race condition on some systems
keyboard = Keyboard()
keyboard_layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups
for pin in keypress_pins:
 key_pin = digitalio.DigitalInOut(pin)
 key_pin.direction = digitalio.Direction.INPUT
 key_pin.pull = digitalio.Pull.UP
 key_pin_array.append(key_pin)

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 160 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to send the key press "A" or the string
"Hello world!"

This wiring example shows A1 and A2 connected to

ground.

Remember, on Trinket, A1 and A2 are labeled 2 and 0!

On other boards, you will have A1 and A2 labeled as

expected.

Create the Objects and Variables

First, we assign some variables for later use. We create three arrays assigned to variables: keypress_pins ,
key_pin_array , and keys_pressed . The first is the pins we're going to use. The second is empty because we're going to
fill it later. The third is what we would like our "keyboard" to output - in this case the letter "A" and the phrase, "Hello
world!". We create our last variable assigned to control_key which allows us to later apply the shift key to our keypress.
We'll be using two keypresses, but you can have up to six keypresses at once.

Next keyboard and keyboard_layout objects are created. We only have US right now (if you make other layouts please

while True:
 # Check each pin
 for key_pin in key_pin_array:
 if not key_pin.value: # Is it grounded?
 i = key_pin_array.index(key_pin)
 print("Pin #%d is grounded." % i)

 # Turn on the red LED
 led.value = True

 while not key_pin.value:
 pass # Wait for it to be ungrounded!
 # "Type" the Keycode or string
 key = keys_pressed[i] # Get the corresponding Keycode or string
 if isinstance(key, str): # If it's a string...
 keyboard_layout.write(key) # ...Print the string
 else: # If it's not a string...
 keyboard.press(control_key, key) # "Press"...
 keyboard.release_all() # ..."Release"!

 # Turn off the red LED
 led.value = False

 time.sleep(0.01)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 161 of 199

https://learn.adafruit.com/assets/52710

submit a GitHub pull request!). The time.sleep(1) avoids an error that can happen if the program gets run as soon as the
board gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction and give them each a pullup.
Then we apply the pin objects to key_pin_array so we can use them later.

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print , "Waiting for key pin..." so you know the code is ready and
waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected the pin to ground. Once it
changes, it prints, "Pin # grounded." to let you know the ground state has been detected. Then we turn on the red LED.
The code waits for the state to change again, i.e. it waits for you to unground the pin by disconnecting the wire
attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded and ungrounded A1, the code
retrieves the keypress a , if you grounded and ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the keyboard_layout to determine the keypresses.
Otherwise, the code prints the keypress from the control_key and the keypress "a", which result in "A". Then it calls
keyboard.release_all() . You always want to call this soon after a keypress or you'll end up with a stuck key which is
really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in CircuitPython Digital In &
Out (https://adafru.it/Beo). Try altering the code to add more pins for more keypress options!

CircuitPython Mouse Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

import time

import analogio
import board
import digitalio
from adafruit_hid.mouse import Mouse

mouse = Mouse()

x_axis = analogio.AnalogIn(board.A0)
y_axis = analogio.AnalogIn(board.A1)
select = digitalio.DigitalInOut(board.A2)
select.direction = digitalio.Direction.INPUT
select.pull = digitalio.Pull.UP

pot_min = 0.00
pot_max = 3.29
step = (pot_max - pot_min) / 20.0

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 162 of 199

file:///circuitpython-essentials/circuitpython-digital-in-out

For this example, we've wired up a 2-axis thumb joystick with a select button. We use this to emulate the mouse
movement and the mouse left-button click. To wire up this joytick:

Connect VCC on the joystick to the 3V on your board. Connect ground to ground.
Connect Xout on the joystick to pin A0 on your board.
Connect Yout on the joystick to pin A1 on your board.
Connect Sel on the joystick to pin A2 on your board.

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts page (https://adafru.it/AMd) to verify your
wiring.

def steps(axis):
 """ Maps the potentiometer voltage range to 0-20 """
 return round((axis - pot_min) / step)

while True:
 x = get_voltage(x_axis)
 y = get_voltage(y_axis)

 if select.value is False:
 mouse.click(Mouse.LEFT_BUTTON)
 time.sleep(0.2) # Debounce delay

 if steps(x) > 11.0:
 # print(steps(x))
 mouse.move(x=1)
 if steps(x) < 9.0:
 # print(steps(x))
 mouse.move(x=-1)

 if steps(x) > 19.0:
 # print(steps(x))
 mouse.move(x=8)
 if steps(x) < 1.0:
 # print(steps(x))
 mouse.move(x=-8)

 if steps(y) > 11.0:
 # print(steps(y))
 mouse.move(y=-1)
 if steps(y) < 9.0:
 # print(steps(y))
 mouse.move(y=1)

 if steps(y) > 19.0:
 # print(steps(y))
 mouse.move(y=-8)
 if steps(y) < 1.0:
 # print(steps(y))
 mouse.move(y=8)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 163 of 199

file:///adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities

To use this demo, simply move the joystick around. The mouse will move slowly if you move the joystick a little off
center, and more quickly if you move it as far as it goes. Press down on the joystick to click the mouse. Awesome! Now
let's take a look at the code.

Create the Objects and Variables

First we create the mouse object.

Next, we set x_axis and y_axis to pins A0 and A1 . Then we set select to A2 , set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like we did in CircuitPython Analog
In (https://adafru.it/Bep). We set pot_min and pot_max to be the minimum and maximum voltage read from the
potentiometers. We assign step = (pot_max - pot_min) / 20.0 to use in a helper function.

CircuitPython HID Mouse Helpers

First we have the get_voltage() helper so we can get the correct readings from the potentiometers. Look familiar? We
learned about it in Analog In (https://adafru.it/Bep).

Second, we have steps(axis) . To use it, you provide it with the axis you're reading. This is where we're going to use the
step variable we assigned earlier. The potentiometer range is 0-3.29. This is a small range. It's even smaller with the
joystick because the joystick sits at the center of this range, 1.66, and the + and - of each axis is above and below this
number. Since we need to have thresholds in our code, we're going to map that range of 0-3.29 to while numbers
between 0-20.0 using this helper function. That way we can simplify our code and use larger ranges for our thresholds
instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y_axis .

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 164 of 199

file:///circuitpython-essentials/circuitpython-analog-in
file:///circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

Next, we check to see when the state of the select button is False . It defaults to True when it is not pressed, so if the
state is False , the button has been pressed. When it's pressed, it sends the command to click the left mouse button.
The time.sleep(0.2) prevents it from reading multiple clicks when you've only clicked once.

Then we use the steps() function to set our mouse movement. There are two sets of two if statements for each axis.
Remember that 10 is the center step, as we've mapped the range 0-20 . The first set for each axis says if the joystick
moves 1 step off center (left or right for the x axis and up or down for the y axis), to move the mouse the appropriate
direction by 1 unit. The second set for each axis says if the joystick is moved to the lowest or highest step for each axis,
to move the mouse the appropriate direction by 8 units. That way you have the option to move the mouse slowly or
quickly!

To see what step the joystick is at when you're moving it, uncomment the print statements by removing the # from
the lines that look like # print(steps(x)) , and connecting to the serial console to see the output. Consider only
uncommenting one set at a time, or you end up with a huge amount of information scrolling very quickly, which can be
difficult to read!

For more detail check out the documentation at https://circuitpython.readthedocs.io/projects/hid/en/latest/

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 165 of 199

https://circuitpython.readthedocs.io/projects/hid/en/latest/

CircuitPython CPU Temp

There is a CPU temperature sensor built into every ATSAMD21 chip. CircuitPython makes it really simple to read the
data from this sensor. This works on the M0, M0 Express and Circuit Playground Express boards, because it's built into
the microcontroller used for these boards. It does not work on the ESP8266 as this uses a different chip.

The data is read using two simple commands. We're going to enter them in the REPL. Plug in your board, connect to
the serial console (https://adafru.it/Bec), and enter the REPL (https://adafru.it/Awz). Then, enter the following commands
into the REPL:

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not exactly the ambient temperature and
it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32. It's super easy to do math using
CircuitPython. Check it out!

import microcontroller
microcontroller.cpu.temperature

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 166 of 199

file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///welcome-to-circuitpython/the-repl

CircuitPython Storage

CircuitPython boards show up as as USB drive, allowing you to edit code directly on the board. You've been doing this
for a while. By now, maybe you've wondered, "Can I write data from CircuitPython to the storage drive to act as a
datalogger?" The answer is yes!

However, it is a little tricky. You need to add some special code to boot.py, not just code.py. That's because you have
to set the filesystem to be read-only when you need to edit code to the disk from your computer, and set it to writeable
when you want the CircuitPython core to be able to write.

The following is your new boot.py. Copy and paste the code into boot.py using your favorite editor. You may need to
create a new file.

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express,
no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch = digitalio.DigitalInOut(board.D2) , and uncomment
switch = digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express, comment out switch = digitalio.DigitalInOut(board.D2) , and uncomment switch =

digitalio.DigitalInOut(board.D7) .

The following is your new code.py. Copy and paste the code into code.py using your favorite editor.

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You cannot have
both write to the drive at the same time. (Bad Things Will Happen so we do not allow you to do it!)

import board
import digitalio
import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express
switch = digitalio.DigitalInOut(board.D2)
switch = digitalio.DigitalInOut(board.D5) # For Feather M0/M4 Express
switch = digitalio.DigitalInOut(board.D7) # For Circuit Playground Express
switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", switch.value)

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 167 of 199

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch setup in your code is connected to a
ground pin. If it is, it changes the read-write state of the file system, so the CircuitPython core can begin logging the
temperature to the board.

For help finding the correct pins, see the wiring diagrams and information in the Find the Pins section of the
CircuitPython Digital In & Out guide (https://adafru.it/Bes). Instead of wiring up a switch, however, you'll be connecting
the pin directly to ground with alligator clips or jumper wires.

import time

import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.D13)
led.switch_to_output()

try:
 with open("/temperature.txt", "a") as fp:
 while True:
 temp = microcontroller.cpu.temperature
 # do the C-to-F conversion here if you would like
 fp.write('{0:f}\n'.format(temp))
 fp.flush()
 led.value = not led.value
 time.sleep(1)
except OSError as e:
 delay = 0.5
 if e.args[0] == 28:
 delay = 0.25
 while True:
 led.value = not led.value
 time.sleep(delay)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 168 of 199

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Once you copied the files to your board, eject it and unplug it from your computer. If you're using your Circuit
Playground Express, all you have to do is make sure the switch is to the right. Otherwise, use alligator clips or jumper
wires to connect the chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console with ctrl+D or if you save a
file. You must EJECT the USB drive, then physically press the reset button!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 169 of 199

This file gets updated once per second, but you won't see data come in live. Instead, when you're ready to grab the
data, eject and unplug your board. For CPX, move the switch to the left, otherwise remove the wire connecting the pin
to ground. Now it will be possible for you to write to the filesystem from your computer again, but it will not be logging
data.

We have a more detailed guide on this project available here: CPU Temperature Logging with
CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it out!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 170 of 199

file:///cpu-temperature-logging-with-circuit-python

CircuitPython Expectations

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If you are
running CircuitPython 2.x, you need to update to 3.x (https://adafru.it/Amd).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update to
CircuitPython 3.x and then download the 3.x bundle (https://adafru.it/ABU).

We will soon stop providing the 2.x bundle as an automatically created download on the Adafruit CircuitPython Bundle
repo. If you must continue to use 2.x, you can still download the 2.x version of mpy-cross from the 2.x release of
CircuitPython on the CircuitPython repo and create your own 2.x compatible .mpy library files. However, it is best to
update to 3.x for both CircuitPython and the library bundle.

Switching Between CircuitPython and Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between the two? Switching between
CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow the steps found in Welcome to
CircuitPython: Installing CircuitPython (https://adafru.it/Amd).

If you're currently running CircuitPython and would like to start using Arduino, plug in your board, and then load your
Arduino sketch. If there are any issues, you can double tap the reset button to get into the bootloader and then try
loading your sketch. Always backup any files you're using with CircuitPython that you want to save as they could be
deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-Express Boards

We often reference "Express" and "Non-Express" boards when discussing CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides you with extra space for
CircuitPython and your code. This means that we're able to include more functionality in CircuitPython and you're able
to do more with your code on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0 Express, Metro M0 Express and
Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, Feather M0 Basic, and other non-Express Feather M0 variants.

Non-Express Boards: Gemma and Trinket

CircuitPython runs nicely on the Gemma M0 or Trinket M0 but there are some constraints

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. If
you are running CircuitPython 2.x, you need to update to 3.x. You must download the CircuitPython Library
Bundle that matches your version of CircuitPython. Please update to CircuitPython 3.x and then download the
3.x bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 171 of 199

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#download-the-latest-version-3-4
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries#installing-the-circuitpython-library-bundle-11-4
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support for hardware
audio playpack or NVM 'eeprom'. Modules audioio and bitbangio are not included. For that support, check out the
Circuit Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out, digital IO, logging storage, and HID
do work! Check the CircuitPython Essentials for examples of all of these.

Differences Between CircuitPython and MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPython
documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and Python

Python (also known as CPython) is the language that MicroPython and CircuitPython are based on. There are many
similarities, but there are also many differences. This is a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard libraries are included. Unfortunately,
for space reasons, many Python libraries are not available. So for instance while we wish you could import numpy ,
numpy isn't available. So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of unlimited size are not supported. The
largest positive integer that can be represented is 2 -1, 1073741823, and the most negative integer possible is -2 , -
1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as in Python). The largest floating
point magnitude that can be represented is about +/-3.4e38. The smallest magnitude that can be represented with full
accuracy is about +/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like regular single precision floating
point), which is about five or six decimal digits of precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can look at the MicroPython
documentation. We keep up with MicroPython stable releases, so check out the core 'differences' they document
here. (https://adafru.it/zwA)

30 30

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 172 of 199

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython
http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython microcontrollers.

What is a MemoryError ?

Memory allocation errors happen when you're trying to store too much on the board. The CircuitPython microcontroller
boards have a limited amount of memory available. You can have about 250 lines of code on the M0 Express boards. If
you try to import too many libraries, a combination of large libraries, or run a program with too many lines of code, your
code will fail to run and you will receive a MemoryError in the serial console (REPL).

What do I do when I encounter a MemoryError ?

Try resetting your board. Each time you reset the board, it reallocates the memory. While this is unlikely to resolve your
issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries are available in the bundle in a
.mpy format which takes up less memory than .py format. Be sure that you're using the latest library
bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments, remove extraneous or unneeded
code, or any other clean up you can do to shorten your code. If you're using a lot of functions, you could try moving
those into a separate library, creating a .mpy of that library, and importing it into your code.

You can turn your entire file into a .mpy and import that into code.py . This means you will be unable to edit your code
live on the board, but it can save you space.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download the CircuitPython 2.x version of mpy-cross for your operating system from the CircuitPython
Releases page (https://adafru.it/tBa) under the latest 2.x version.

You can build mpy-cross for CircuitPython 3.x by cloning the CircuitPython GitHub repo (https://adafru.it/tB7), and
running make in the circuitpython/mpy-cross/ directory. Then run ./mpy-cross path/to/foo.py to create a foo.mpy in the
same directory as the original file.

How do I check how much memory I have free?

import gc
gc.mem_free()

Will give you the number of bytes available for use.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an estimated time for when they will be
included.

Does CircuitPython support ESP32?

No. We are not currently developing for it. It will be pulled from MicroPython when development there for it is
complete. We do not have an estimated time for when that will happen.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 173 of 199

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/cpy-welcome)
CPC = Circuit Playground Classic (https://adafru.it/ncE)
CPX = Circuit Playground Express (https://adafru.it/wpF)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 174 of 199

https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333

MakeCode

Microsoft MakeCode has been augmented to support more than the Adafruit Circuit Playground Express.

Using maker.makecode.com (https://adafru.it/C9N), you can use other Adafruit microcontrollers, breadboards and other
components!

See the following pages for more information.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 175 of 199

https://maker.makecode.com/

What is MakeCode Maker?

MakeCode Maker, https://maker.makecode.com, is a web-based code editor for physical computing. It provides a
block editor, similar to Scratch or Code.org, and also a JavaScript editor for more advanced users.

Some of the key features of MakeCode are:

web based editor: nothing to install
cross platform: works in most modern browsers from tiny phone to giant touch screens
compilation in the browser: the compiler runs in your browser, it's fast and works offline
blocks + JavaScript: drag and drop blocks or type JavaScript, MakeCode let's you go back and forth between
the two.
works offline: once you've loaded the editor, it stays cached in your browser.
event based runtime: easily respond to button clicks, shake gestures and more

How is it related to makecode.adafruit.com ?

makecode.adafruit.com and maker.makecode.com are editors built using the MakeCode project. In both editors,
one can use drag-and-drop blocks or JavaScript to program micro-controllers.

makecode.adafruit.com specifically applies to the Adafruit Circuit Playground Express only
maker.makecode.com aims at supporting the Adafruit Express boards (and more boards from different
manufacturers), with an emphasis on breadboarding support.

Is it open source?

Yes, Maker is open source under MIT at https://github.com/Microsoft/pxt-maker.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 176 of 199

https://maker.makecode.com
https://makecode.adafruit.com/
https://maker.makecode.com/
https://github.com/Microsoft/pxt
https://makecode.adafruit.com/
https://maker.makecode.com/
https://github.com/Microsoft/pxt-maker,

Adafruit METRO M0 Express - designed for CircuitPython

$24.95
IN STOCK

ADD TO CART

Adafruit Feather M0 Express - Designed for CircuitPython

$19.95
IN STOCK

ADD TO CART

Your browser does not support the video tag. Adafruit GEMMA M0 - Miniature wearable electronic
platform

$9.95
IN STOCK

ADD TO CART

Adafruit Trinket M0 - for use with CircuitPython & Arduino
IDE

$8.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 177 of 199

https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/3500
https://www.adafruit.com/product/3500

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 178 of 199

Editing Blocks

The block editor is the easiest way to get started with MakeCode Maker. You can drag and drop blocks from the
category list. Each time you make a change to the blocks, the simulator will automatically restart and run the code. You
can test your program in the browser! The simulator will also generate the wiring for your breadboard for simple
programs.

Blinky!

The animation above shows to use the blocks to create a program that blinks an LED.

Creating a blink effect is done by setting the pin HIGH, pause for a little, then set the pin LOW, pause for a little, then
repeat forever.

forever runs blocks in a loop with a 20ms pause in between (it is similar to Arduino loop).
digital write pin sets the pin to high or low
pause blocks the current thread for 100ms. If other events or forever loops are running, they have the opporunity
to run in parallel.

On the maker home screen, click on "New Project", then select which board you want to use (you can change
board later too).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 179 of 199

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 180 of 199

Editing JavaScript

MakeCode allows you to author your programs in a flavor of JavaScript optimized for micro-controllers. The code
editor comes with error highlighting, auto-completion and other goodies. It is the same code editor that powers Visual
Studio Code.

Blocks to JavaScript

Click on the "Blocks / JavaScript" toggle on top of the editor to enter the JavaScript mode. Your blocks will
automatically be converted to JavaScript.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 181 of 199

Downloading and Flashing

Getting your code into your device is very easy with MakeCode. You do not need to install any software on your
machine and the process takes two steps:

Step 1: Connect your board via USB
Step 2: Compile and Download the .uf2 file into your board drive

We are going to go through these two steps in detail.

Step 1: Connect your board via USB

Connect your board to your computer via a USB cable. You should see a MAKECODE drive appear in your file
explorer/finder. If your board is in bootloader mode, you will see drive names like METROBOOT or GEMMABOOT. We
will call those boardnameBOOT.

Step 2: Test your code in the simulator

Let's first verify that our code compiles properly in MakeCode.

MakeCode has a built-in simulator that re-loads and re-runs code when restarted. This is an easy way to both ensure
that our code compiles and simulate it before moving it onto the board. The refresh button re-loads the simulator with
your latest version of block code.

If it is your first time running MakeCode or if you have previously installed Arduino or CircuitPython, you may
need to double press the reset button to get your board into bootloader mode.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 182 of 199

Step 3: Download and flash your code

If your board is working in the simulator, it's time to download it to your actual board! Click the Download button. It will
generate a .uf2 file and download it to your computer. UF2 (https://adafru.it/vPE) is a file format designed by Microsoft
to flash microcontrollers over USB.

General Steps to copy over your program (not specific to any Operating system)

* Ensure your board is connected via USB.
* Find the .uf2 file generated by MakeCode in your file explorer. Copy it to the MAKECODE or boardnameBOOT
volume.
* The status LED on the board will blink while the file is transferring. Once it's done transferring your file, the board will
automatically reset and start running your code (just like in the simulator!)

If you receive a "we could not run this project" error, please check over your code for errors.

On a Mac, you can safely ignore the "Disk Not Ejected Properly" notification that may appear after copying
your .uf2 file.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 183 of 199

https://github.com/Microsoft/uf2

Saving and Sharing

Extracting your code from the board

The .uf2 file you created by clicking on the Compile button in MakeCode also contains the source code of your
program!

You can open this file in MakeCode by dragging and dropping it into the browser to edit it.

You can also find the current .uf2 file running on the MAKECODE or boardnameBOOT drive.

Sharing

You can share your code by clicking on the share button. After confirmation, MakeCode will create a short unique URL
for your code. Anyone with that URL will be able to reload the code.

These URLs can also be used to embed the editor your blog or web pages! Just copy paste the URL in your text editor
and (if it supports oEmbed) it will automatically load it in your page.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 184 of 199

Custom Extensions

MakeCode allows to package and share code as Extensions. Extensions are stored as GitHub repositories and can be
edited directly from the MakeCode editor.

Account setup

First, you need a GitHub account if you don't have one yet. GitHub is the largest host of source code in the world, with
over 30 million users.

Once you have your account, you'll need to tie the MakeCode web app to your account. To do that, open any project in
https://maker.makecode.com, go to the Gear Wheel menu on top, and select Extensions. At the bottom, there should
be a link to log in to GitHub. A dialog will appear asking you to generate a GitHub token. Follow the instructions and
paste the token into the dialog.

Once you've logged in, go back to the home screen. Now, the dialog that comes up after you press the Import button
will have an additional option to list your GitHub repositories or create a new one.
Additionally, the Import URL option will now support https://github.com/... URLs, which is useful if you can't find your
repository in the list (especially organizational repos), or as way to search the list faster using a copy/paste of the URL.

If you import a completely empty repo, or create a fresh one, MakeCode will automatically initialize it with pxt.json and
other supporting files. If you import a non-empty repo without the pxt.json file, you will be asked if you want it
initialized. Note that this might overwrite your existing files.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 185 of 199

https://github.com
https://github.com/join
https://maker.makecode.com

Commit and push

Once you have your repo set up, edit files as usual. Whenever you get to a stable state, or just every now and
then to keep history and insure against losing your work, push the changes to GitHub. This is done with a little GitHub
sync button on top of the Explorer. The button will check if there are any pending changes to check in. If there are, it
will create a commit, pull the latest changes from GitHub, merge or fast-forward the commit if needed, and push the
results to GitHub.

If there are changes, you will be asked for a commit message. Try to write something meaningful, like
Fixed temperature reading in sub-freezing conditions or Added mysensor.readTemperature() function .

When describing changes, you are also given an option to bump the version number. This is a signal that the version
you're pushing is stable and the users should upgrade to it. When your package is first referenced, the latest bumped
version is used. Similarly, if there is a newer bumped version, a little upgrade button will appear next to the package.
Commits without bump are generally not accessible to most users, so they are mostly for you to keep track of things.

We do not really distinguish between a commit, push, and pull - it all happens at once in the sync operation.

You can view a history of changes by following the version number link on the Project Settings page.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 186 of 199

There is also another button next to the GitHub sync - you can use it to add new files to the project.
This is mostly to help keep the project organized. For our TypeScript compiler it doesn't matter if you
use one big file or a bunch of smaller ones.

Conflicts

It's possible that multiple people are editing the same package at the same time causing edit conflicts. This is similar to
the situation where the same person edits the package using several computers, browsers, or web sites. In the conflict
description below, for simplicity, we'll just concentrate on the case of multiple people working on the same package.

Typically, two people would sync a GitHub package at the same version, and then they both edit it. The first person
pushes the changes successfully. When MakeCode tries to push the changes from the second person,
it will notice that these are changes against a non-current version. It will create a commit based on the previous version
and try to use the standard git merge (run server-side by GitHub). This usually succeeds if the two people edited
different files, or at least different parts of the file - you end up with both sets of changes logically combined. There is
no user interaction required in that case.

If the automatic merge fails, MakeCode will create a new branch, push the commit there, and then create a pull request
(PR) on GitHub. The dialog that appears after this happens will let you go to the GitHub web site and resolve the
conflicts. Before you resolve conflicts and merge the PR, the master branch will not have your changes (it will have
changes from the other person, who managed to commit first). After creating the PR, MakeCode moves your local
version to the master branch (without your changes), but don't despair they are not lost! Just resolve the conflict in
GitHub and sync to get all changes back. MakeCode will also sync automatically when you close the PR dialog
(presumably, after you resolved the conflict in another tab).

Testing your package

To test blocks in your package, press the New Project button on the home screen and go to the Extensions dialog. It
will list all your GitHub projects as available for addition. Select your package and see what the blocks look like.

You can have one browser tab open with that test project, and another one with the package. When you switch
between them, they reload automatically.

For testing TypeScript APIs you don't need a separate project, and instead can
use the test.ts file in the package itself. It is only used when you run the package
directly, not when you add it to a project. You can put TypeScript test code in there.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 187 of 199

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 188 of 199

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that makes it easier than ever to flash
different code onto the microcontroller. This bootloader makes it easy to switch between Microsoft MakeCode,
CircuitPython and Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink or avrdude), one can simply drag a
file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just drag a binary or hex file (trust
us, we tried it, it isn't cross-platform compatible). Instead, the format of the file has extra information to help the
bootloader know where the data goes. The format is called UF2 (USB Flashing Format). Microsoft MakeCode
generates UF2s for flashing and CircuitPython releases are also available as UF2. You can also create your own UF2s
from binary files using uf2tool, available here. (https://adafru.it/vPE)

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE which expects a BOSSA bootloader
on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (https://adafru.it/w5A), then check
out the UF2 file format specification. (https://adafru.it/vPE)

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository (https://adafru.it/Beu) for source code
and releases of pre-built bootloaders (https://adafru.it/Bev).

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is easily done by double tapping the
reset button. Once the bootloader is active you will see the small red LED fade in and out and a new drive will appear
on your computer with a name ending in BOOT. For example, feathers show up as FEATHERBOOT, while the new
CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up as TRINKETBOOT, and Gemma M0 will show up
as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more onboard neopixels to indicate the
connection status, red for disconnected and green for connected. If the board is plugged in but still showing that its
disconnected, try a different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When the reset button is double clicked
(about half second between each click) the NeoPixel will stay green to let you know the bootloader is active. When the
reset button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

This is an information page for advanced users who are curious how we get code from your computer into
your Express board!

The bootloader is not needed when changing your CircuitPython code. Its only needed when upgrading the
CircuitPython core or changing between CircuitPython, Arduino and Microsoft MakeCode.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 189 of 199

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://github.com/adafruit/uf2-samd21/releases/latest

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or maybe the drivers could not
enumerate. Try a new USB cable first. Then try another port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk drive...

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 190 of 199

Once the bootloader is successfully connected you can open the drive and browse the virtual filesystem. This isn't the
same filesystem as you use with CircuitPython or Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.
 INDEX.HTM - Links to Microsoft MakeCode.
 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug reports.

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished copying, the bootloader will
automatically restart. This usually causes a warning about an unsafe eject of the drive. However, its not a problem. The
bootloader knows when everything is copied successfully.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 191 of 199

You may get an alert from the OS that the file is being copied without it's properties. You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't worry about this. The drive only
ejects once the bootloader has verified and completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the standard method of updating boards
when in the Arduino IDE. It is a command-line tool that can be used in any operating system. We won't cover the full
use of the bossac tool, suffice to say it can do quite a bit! More information is available at
ShumaTech (https://adafru.it/vQa).

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial Port driver file. Windows 10
users do not need this so skip this step.

You can download our full driver package here:

https://adafru.it/AB0

https://adafru.it/AB0

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 192 of 199

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Download and run the installer. We recommend just selecting all the serial port drivers available (no harm to do so) and
installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your Device Manager from the control
panel and look under Ports (COM & LPT) for a device called Feather M0 or Circuit Playground or whatever!

If you see something like this, it means you did not install the drivers. Go back and try again, then remove and re-plug
the USB cable for your board

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 193 of 199

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to read/write custom binary files,
say for loading CircuitPython or your own code. We recommend using bossac v 1.7.0 (or greater), which has been
tested. The Arduino branch is most recommended (https://adafru.it/vQb).

You can download the latest builds here. (https://adafru.it/s1B) The mingw32 version is for Windows, apple-darwin for
Mac OSX and various linux options for Linux. Once downloaded, extract the files from the zip and open the command
line to the directory with bossac

For example here's the command line you probably want to run:

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-feather_m0_express-3.0.0-adafruit.5.bin

This will -e rase the chip, -w rite the given file, -v erify the write and -R eset the board. After reset, CircuitPython
should be running. Express boards may cause a warning of an early eject of a USB drive but just ignore it. Nothing
important was being written to the drive. A hard power-reset is also recommended after bossac, just in case.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 194 of 199

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

Updating the bootloader

The UF2 bootloader is a new bootloader, and while we've done a ton of testing, it may contain bugs. Usually these
bugs effect reliability rather than fully preventing the bootloader from working. If the bootloader is flaky then you can
try updating the bootloader itself to potentially improve reliability.

In general, you shouldn't have to update the bootloader! If you do think you're having bootloader related issues,
please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode. Simply enter the bootloader as
above and then drag the update bootloader uf2 file below. This uf2 contains a program which will unlock the
bootloader section, update the bootloader, and re-lock it. It will overwrite your existing code such as CircuitPython or
Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INFO_UF2.TXT file should show the
newer version number inside.

For example:

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO
Model: Metro M0
Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython core (https://adafru.it/tBa).

Below are the latest updaters for various boards. The latest versions can always be found here (https://adafru.it/Bmg).
Look for the update-bootloader... files, not the bootloader... files.

https://adafru.it/Bmg

https://adafru.it/Bmg

https://adafru.it/Bmi

https://adafru.it/Bmi

https://adafru.it/Bmj

https://adafru.it/Bmj

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 195 of 199

https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/uf2-samdx1/releases/latest
https://github.com/adafruit/uf2-samdx1/releases/latest/update-bootloader-circuitplay_m0*.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v2.0.0-adafruit.5/update-bootloader-feather_m0-v2.0.0-adafruit.5.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v2.0.0-adafruit.5/update-bootloader-metro_m0-v2.0.0-adafruit.5.uf2

https://adafru.it/Bml

https://adafru.it/Bml

https://adafru.it/Bml

https://adafru.it/Bml

https://adafru.it/Bmo

https://adafru.it/Bmo

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get annoyed by the constant "Hey you
inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the Hardware and

Sound header

Click on the Autoplay header

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 196 of 199

https://github.com/adafruit/uf2-samdx1/releases/download/v2.0.0-adafruit.5/update-bootloader-trinket_m0-v2.0.0-adafruit.5.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v2.0.0-adafruit.5/update-bootloader-trinket_m0-v2.0.0-adafruit.5.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v2.0.0-adafruit.5/update-bootloader-itsybitsy_m0-v2.0.0-adafruit.5.uf2
https://learn.adafruit.com/assets/41276
https://learn.adafruit.com/assets/41277

Uncheck the box at the top, labeled Use Autoplay for all

devices

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash and the Python conversion
script (https://adafru.it/vZb). Make sure that your program was compiled to start at 0x2000 (8k) for M0 boards or
0x4000 (16kB) for M4 boards. The bootloader takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker
script (https://adafru.it/CXh) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it. Here is an example from the
directory with uf2conv.py. This command will produce a firmware.uf2 file in the same directory as the source
firmware.bin. The uf2 can then be flashed in the same way as above.

Installing the bootloader on a fresh/bricked board

If you somehow damaged your bootloader or maybe you have a new board, you can use a JLink to re-install it. Here's a
short writeup by turbinenreiter on how to do it for the Feather M4 (but adaptable to other boards) (https://adafru.it/ven)

For programs with 0x2000 offset (default)
uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)
uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-metro_M4_express/firmware.bin

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 197 of 199

https://learn.adafruit.com/assets/41278
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/ports/atmel-samd/boards/samd21x18-bootloader.ld
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151

Downloads

https://adafru.it/B48

https://adafru.it/B48

Datasheets

ATSAMD21 Datasheet (https://adafru.it/kUf) (the main chip on the Feather M0)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files in GitHub (https://adafru.it/vfS)

https://adafru.it/z3F

https://adafru.it/z3F

Note AREF in the diagram should be marked PA03 not PA02

Firmware

'Classic' Feather M0 Bootloader - You'll need to program it in using an ST-Link, JLink or other SWD-capable
programmer. HEX available in the github repo (https://adafru.it/kFh)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-
circuitpython

Page 198 of 199

https://cdn-learn.adafruit.com/assets/assets/000/053/298/original/Feather_M0_Express_April_24_2018_Filesys.zip?1524693136
https://www.adafruit.com/images/product-files/2772/atmel-42181-sam-d21_datasheet.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Feather-M0-Express-PCB
https://cdn-learn.adafruit.com/assets/assets/000/046/203/original/feather_M0_Express_Pinout_v1.2.pdf?1504806423
https://github.com/adafruit/Adafruit-Feather-M0-Basic-Proto-PCB

© Adafruit Industries Last Updated: 2018-12-13 04:59:07 PM UTC Page 199 of 199

	Guide Contents
	Overview
	Pinouts
	Power Pins
	Logic pins
	SPI Flash and NeoPixel
	Other Pins!
	Debug Interface
	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Power Management
	Battery + USB Power
	Power supplies
	Measuring Battery
	ENable pin
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	Using SPI Flash
	Read & Write CircuitPython Files
	Format Flash Memory
	Datalogging Example
	Reading and Printing Files
	Full Usage Example
	Accessing SPI Flash
	Feather HELP!
	My ItsyBitsy/Feather stopped working when I unplugged the USB!
	My Feather never shows up as a COM or Serial port in the Arduino IDE
	Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant upload to it or fix it...
	I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!
	I'm having problems with COM ports and my Itsy/Feather 32u4/M0
	I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
	I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
	I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding"
	I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"
	I attached some wings to my Feather and now I can't read the battery voltage!

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	Installing Mu Editor
	Installing Mu for Windows or Mac OS X

	Installing Mu for Linux
	Using Mu
	Mu Packages

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files
	Express Boards
	Non-Express Boards
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	CIRCUITPY Drive Does Not Appear
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Space-Saving Tips

	Uninstalling CircuitPython
	Backup Your Code

	Moving to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	CircuitPython Essentials
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Servo Code

	CircuitPython Cap Touch
	Create the Touch Input
	Main Loop
	Find the Pin(s)

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython CPU Temp
	CircuitPython Storage
	Logging the Temperature

	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma and Trinket
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	Frequently Asked Questions
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does CircuitPython support ESP32?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	MakeCode
	What is MakeCode Maker?
	How is it related to makecode.adafruit.com ?
	Is it open source?
	Adafruit METRO M0 Express - designed for CircuitPython
	Adafruit Feather M0 Express - Designed for CircuitPython
	Adafruit GEMMA M0 - Miniature wearable electronic platform
	Adafruit Trinket M0 - for use with CircuitPython & Arduino IDE

	Editing Blocks
	Blinky!

	Editing JavaScript
	Blocks to JavaScript

	Downloading and Flashing
	Step 1: Connect your board via USB
	Step 2: Test your code in the simulator
	Step 3: Download and flash your code
	General Steps to copy over your program (not specific to any Operating system)

	Saving and Sharing
	Extracting your code from the board
	Sharing

	Custom Extensions
	Account setup
	Commit and push
	Conflicts
	Testing your package

	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Installing the bootloader on a fresh/bricked board
	Downloads
	Datasheets
	Firmware
	Schematic & Fabrication Print

