ﬁ adafruit learning system

Adafruit Adalogger FeatherWing

._“:ﬁ I 00
r..rZH Oo

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins
RTC & 12C Pins
SD & SPI Pins
Assembly

Using the Real Time Clock
What is a Real Time Clock?

Battery Backup
CR1220 12mm Diameter - 3V Lithium Coin Cell Battery

RTC with Arduino
Wiring

Talking to the RTC
First RTC test

Setting the time
Reading the time

RTC with CircuitPython
Wiring

Adafruit CircuitPython Library Install
Usage

Setting the time

Using the SD Card
4GB Blank SD/MicroSD Memory Card
USB MicroSD Card Reader/Writer - microSD / microSDHC / microSDXC
Formatting under Windows/Mac

Get Card Info

Next steps!

Example logging sketch
CircuitPython

Adafruit CircuitPython Module Install

Usage
Initialize & Mount SD Card Filesystem
Reading & Writing Data

List Files

Downloads
Datasheets and Files
Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing

N OO oo W

11

11
12

13
13
13
14
15
16
18
18
18
19
19

21
21
21
21

22
25
26
28
28

28
29
29

31
35
35
35
35

Page 2 of 36

Overview

A Feather board without ambition is a Feather board without FeatherWings! This is the Adalogger FeatherWing: it adds
both a battery-backed Real Time Clock and micro SD card storage to any Feather main board. Using our Feather
Stacking Headers or Feather Female Headers you can connect a FeatherWing on top of your Feather board and let the
board take flight!

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 3 of 36

https://www.adafruit.com/products/2830
http://www.adafruit.com/products/2886

This FeatherWing will make it real easy to add datalogging to any of our existing Feathers. You get both an 12C real
time clock (PCF8523) with 32KHz crystal and battery backup, and a microSD socket that connects to the SPI port pins
(+ extra pin for CS). Tested and works great with any of our Feathers, based on ATmega32u4, ATSAMD?21, Teensy, or
ESP8266.

SE336755
GC-2 94v-0

'SD uses SPI
CMDS1 HISO SCK)
PCFB523 12C RTC
RTC Bati: CR1228

0000

0000

We recommend the Arduino's default SD library to talk to the microSD card socket. On ESP8266, the SD CS pin is on
GPIO 15, on Atmel MO or 32u4 it's on GPIO 10. You can cut the trace to the default pin and change this to any pin. To
use the RTC, use our RTCIib library. If you need a precision RTC, check out our DS3231 FeatherWing

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 4 of 36

https://github.com/adafruit/RTClib
https://www.adafruit.com/products/3028

i

LIUJJLILI\"IH

OO

Dc

iy

g
-
——
-
-
3 |

Great for any kind of datalogging or even data reading! Some light soldering is required to attach the headers onto the

'Wing but it's a 10 minute task.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 5 of 36

Pinouts

Evern though every pin from the Feather is 'doubled up' with an inner header, not all of the pins are actually used!

Power Pins

On the bottom row, the 3.3V (second from left) and GND (fourth from left) pin are used to power the SD card and RTC
(to take a load off the coin cell battery when main power is available)

RTC & 12C Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 6 of 36

In the top right, SDA (rightmost) and SCL (to the left of SDA) are used to talk to the RTC chip.

® SCL - 12C clock pin, connect to your microcontrollers 12C clock line. This pin has a 10K pullup resistor to 3.3V
® SDA - 12C data pin, connect to your microcontrollers I12C data line. This pin has a 10K pullup resistor to 3.3V

These pins are in the same location on every Feather

There's also a breakout for INT which is the output pin from the RTC. It can be used as an interrupt output or it could
also be used to generate a square wave.

Note that this pin is open drain - you must enable the internal pullup on whatever digital pin it is connected to!

SD & SPI Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 7 of 36

Starting from the left you've got

® SPI Clock (SCK) - output from feather to wing
® SPI| Master Out Slave In (MOSI) - output from feather to wing
® SPI Master In Slave Out (MISO) - input from wing to feather

These pins are in the same location on every Feather. They are used for communicating with the SD card. When the
SD card is not inserted, these pins are completely free. MISO is tri-stated whenever the SD CS pin is pulled high

The SDCS pin is the chip select line.

® On ESP8266, the SD CS pin is on GPIO 15
® On Atmel MO or 32u4 it's on GPIO 10
e On Teensy 3.x it's on GPIO 10

You can cut the trace to the default pin and change this to any pin by soldering a wire to any available pad.

3logger Q0 Q00000000
g 00000000000

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 8 of 36

Assembly

When putting together your Featherwings, think about how you want it to connect, you can use stacking headers:

Or plain female socket headers:

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 9 of 36

The most common method of attachment for the featherwing is putting stacking or female headers on the Feather
mainboard and then putting the Wing on top:

But don't forget, you can also put the stacking headers on the wing and stack the Feather on top of it!

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 10 of 36

Using the Real Time Clock
What is a Real Time Clock?

When logging data, it's often really really useful to have timestamps! That way you can take data one minute apart (by
checking the clock) or noting at what time of day the data was logged.

The Arduino IDE does have a built-in timekeeper called millis() and theres also timers built into the chip that can keep
track of longer time periods like minutes or days. So why would you want to have a separate RTC chip? Well, the
biggest reason is that millis() only keeps track of time since the Feather was last powered -that means that when the
power is turned on, the millisecond timer is set back to 0. The Feather doesnt know its 'Tuesday' or 'March 8th' all it
can tell is 'lts been 14,000 milliseconds since | was last turned on'.

OK so what if you wanted to set the time? You'd have to program in the date and time and you could have it count
from that point on. But if it lost power, you'd have to reset the time. Much like very cheap alarm clocks: every time they
lose power they blink 12:00

While this sort of basic timekeeping is OK for some projects, a data-logger will need to have consistent timekeeping
that doesnt reset when the power goes out or is reprogrammed. Thus, we include a separate RTC! The RTC chip is a
specialized chip that just keeps track of time. It can count leap-years and knows how many days are in a month, but it
doesn't take care of Daylight Savings Time (because it changes from place to place)

This image shows a computer motherboard with a Real Time Clock called the DS1387. Theres a lithium battery in there
which is why it's so big.

The RTC we'll be using is the PCF8523

Battery Backup

As long as it has a coin cell to run it, the RTC will merrily tick along for a long time, even when the Feather loses power,
or is reprogrammed.

Use any CR1220 3V lithium metal coin cell battery:

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 11 of 36

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

CR1220 12mm Diameter - 3V Lithium Coin Cell Battery
PRODUCT ID: 380

M
IN STOCK

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it will act strangely and
possibly hang the Arduino when you try to use it, so ALWAYS make SURE there's a battery installed, even if
it's a dead battery.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 12 of 36

https://www.adafruit.com/product/380

RTC with Arduino

Wiring

Wiring it up is easy, connect

GND to GND on your board

VCC to the logic level power of your board (on classic Arduinos & Metros use 5V, on 3.3V devices use 3.3V)

SDA to the SDA i2c data pin
SCL to the SCL i2c clock pin

There are internal 10K pull-ups on the PCF8523 on SDA and SCL to the VCC voltage

| | [| '|l [| [] [| "
,‘!;,O_m h-uaq-v:-u

Digital

#
S *adarr uit

Power Analog In
509000 econea
u L] | L] | | |] | |
| |] ||

fritzing

pcfmetro Fritzing

https://adafru.it/A1F

Talking to the RTC

The RTC is an i2c device, which means it uses 2 wires to to communicate. These two wires are used to set the time
and retrieve it.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library, which is available on GitHub. You can do
that by visiting the github repo and manually downloading or, easier go to the Arduino Library Manager

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 13 of 36

https://cdn-learn.adafruit.com/assets/assets/000/047/734/original/pcfmetro.fzz?1509306338
https://github.com/adafruit/RTClib

File Edit [Sketch| Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Prograrnmer Ctrl+Shift+U
r Export compiled Binary Crl+Alt+5

iZesca

H E
I £/ AU Show Sketch Folder Ctrl+K
// VERS Include Library fal
l // FURE Add File... Manage Libraries...
H 0
£ URL: http://forum.arduinc.cc/index.phl Add ZIP Library...
/1
// Released to the public domain Arduino libraries
|
1 ArduinoHttpClient
i Ardiinn@aind

Type in RTClib - and find the one that is by Adafruit and click Install

e —— - = e

Type (Al = | Topic [al x| [ricb

D&2231 by Andrew Wickert , Eric Ayars, Jean-Claude Wippler, Northern Widget LLC =
Arduino library for the DS3221 real-tima clock (RTC) Abstracts functionality for clack reading, clock satting, and alarms for thae
D53231 high-pracision real-time clock, This is a splice of Ayars” (http://hacks.ayars.org/2011/04/ds3231-real-time-clock.html)
and Jeelabs/Ladvada's (https://github.com/adafruit/RTClib) libraries.

More info

RTClb by Adafruit version 1.2.1 INSTALLED
A fork of Jeelab's fantastic RTC library A fork of Jeelab’s fantastic RTC library

More info

1T RrcLib by NeiroN by Jeelabs (hitp:/ /news.jeelabs.org/code), NeiroN (neiron.nxn@gmail.com) =
A library that makes interfacing DS1302, DS1307, D53231, PCFA583, PCFA563, RTC_Millis Real Time Clock modules easy.

Including temperature, alarms and memary storage if present. Includes DateTime dass impl tation and it co on.

Maorg infp

TinyRTCLIb by Adafruit
A tiny varsion of RTCLib, for use with TinyWiraM A tiny version of RTCLID, for usa with TinyWiram
| More info

There are a few different 'forks' of RTClib, make sure you are using the ADAFRUIT one!

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Once done, restart the IDE

First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC once a second. We'll also show
what happens if you remove the battery and replace it since that causes the RTC to halt. So to start, remove the battery
from the holder while the Feather is not powered or plugged into USB. Wait 3 seconds and then replace the battery.
This resets the RTC chip. Now load up the matching sketch for your RTC

Open up Examples->RTClib->pcf8523

Upload it to your board with the PCF8523 breakout board or FeatherWing connected

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 14 of 36

e

-
HelloWerld | Arduine 1.6.9 AudioZero 3 E

Edit Sketch Tools Help Bridge g
MNew Ctrl+M DHT sensor library 4
Open... Ctrl+0 EEPROM 2
Open Recent Firmata 2
Sketchbook HT1632 »
Examples LPD&806 2
Cloze Ctrl+W RTClib datecalc
i Save Ctrl+S RTCZero ds1307
Save As... Ctrl+Shift+5 SoftwareSerial ds1307 nvram
| SPI ds13075qwPin
[l Page Setup Ctrl+Shift+P
Temboo ds3231
Print Ctrl+P .)
TinyWireM pcf8523
L Preferences Ctrl+ Comma USEHost softric
. WiFi101 »
Quit Ctrl+Q
. e Wire 4

Now open up the Serial Console and make sure the baud rate is set correctly at 57600 baud you should see the
following:

r@ COMES e —

e, |

RIC is NOT running! gd_l
2000/5/2 (Tueaday) 0:10%

| since midnight 1/1/1370 = 9572262773 = 110784
now + 7d + 30s: 2000/5/9 12:41:23

2000/5/2 ({(Tueaday) 0:10:0 II
| since midnight 1/1/1970 = 9572262002 = 110794
now + Td + 30s: 2000/5/9 12:40:6

n

L

2000/5/2 (Tuesday) 0:10:3
since midnight 1/1/1970 = 9572262038 = 11073d
now + 7d + 30=: 2000/5/9 12:40:9

2000/5/2 (Tuesday) 0:10:6
since midnight 1/1/1970 = 9572262063 = 11073d
now + Td + 30=: 2000/5/9 12:40:12

2000/5/2 (Tueaday) 0:10:9
since midnight 1/1/1970 = 9572262098 = 11073d
new + Td + 303: 2000/5/9 12:40:15

-

AAAAFE D ITuasdnssy Asi0:1%

il [BothhL&CR | [57600baud)

Whenever the RTC chip loses all power (including the backup battery) it will reset to an earlier date and report the time
as 0:0:0 or similar. Whenever you set the time, this will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once you've set the time. You shouldn't
have to and the battery holder is very snug so unless the board is crushed, the battery won't 'fall out'

Setting the time

With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 15 of 36

if (! rtc.initialized()) {
Serial.println("RTC is NOT running!");
// following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(_DATE), F(_ TIME)));

This line is very cute, what it does is take the Date and Time according the computer you're using (right when you
compile the code) and uses that to program the RTC. If your computer time is not set right you should fix that first. Then
you must press the Upload button to compile and then immediately upload. If you compile and then upload later, the
clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

r B
COMSS ESRIERC

2016/9/5 (Monday) 19:0:17 -
since midnight 1/1/1870 = 14731020173 = 170494
now + 7d + 30s: 2016/9/13 7:30:23

m

2016/9/5 (Monday) 19:0:20
gince midnight 1/1/13970 = 14731020203 = 170494
now + 7d + 30s: 2016/9/13 7:30:26

2016/9/5 (Monday) 19:0:23
gince midnight 1/1/13970 = 14731020233 = 170494
now + 7d + 30s: 2016/9/13 7:30:29

2016/9/5 (Monday) 19:0:28&
since midnight 1/1/1870 = 14731020263 = 170494
now + 7d + 30s3: 2016/9/13 7:30:32

2016/9/5 (Monday) 19:0:29
since midnight 1/1/1870 = 14731020293 = 170494
now + 7d + 30s3: 2016/9/13 7:30:35

-

] Autoscrol BothNL&CR » |57600baud +

o am

From now on, you won't have to ever set the time again: the battery will last 5 or more years

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look at the sketch again to see how
this is done

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 16 of 36

void loop () {
DateTime now = rtc.now();

Serial.print(now.year(), DEC);

Serial.print('/');
Serial.print(now.month(), DEC);
Serial.print('/');

Serial.print
Serial.print
Serial.print
Serial.print
Serial.print
Serial.print
Serial.print(now.minute(), DEC);
Serial.print(':");

Serial.print(now.second(), DEC);
Serial.println();

now.day(), DEC);

n (n) ;
daysOfTheWeek[now.dayOfTheWeek()]);
n) n) ;

now. hour(), DEC);

")

~ e~~~ o~~~ o~~~ o~~~

There's pretty much only one way to get the time using the RTClib, which is to call now(), a function that returns a
DateTime object that describes the year, month, day, hour, minute and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and RTC.hour() to get the current
year and hour. However, there's one problem where if you happen to ask for the minute right at 3:14:59 just before the
next minute rolls over, and then the second right after the minute rolls over (so at 3:15:00) you'll see the time as 3:14:00
which is a minute off. If you did it the other way around you could get 3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying the time pretty often - we take a
'snapshot' of the time from the RTC all at once and then we can pull it apart into day() or second() as seen above. It's a
tiny bit more effort but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts the number of seconds (not
counting leapseconds) since midnight, January 1st 1970

Serial.print(" since 2000 = ");
Serial.print(now.unixtime());
Serial.print("s = ");
Serial.print(now.unixtime() / 86400L);
Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then as well. This might be useful
when you want to keep track of how much time has passed since the last query, making some math a lot easier (like
checking if it's been 5 minutes later, just see if unixtime() has increased by 300, you dont have to worry about hour
changes)

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 17 of 36

RTC with CircuitPython

Wiring

Wiring it up is easy, connect

GND to GND on your board

VCC to the logic level power of your board - every CircuitPython board uses 3.3V

SDA to the SDA i2c data pin
SCL to the SCL i2c clock pin

There are internal 10K pull-ups on the PCF8523 on SDA and SCL to the VCC voltage

fritzing

Adafruit CircuitPython Library Install

To use the RTC sensor with your Adafruit CircuitPython board you'll need to install
the Adafruit_CircuitPython_PCF8523 module on your board.

First make sure you are running the latest version of Adafruit CircuitPython for your board.
Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle. Our introduction guide has a great page on how to install the
library bundle for both express and non-express boards.
Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

e adafruit_bus_device folder

e adafruit_register folder

e adafruit_pcf8523.mpy

Before continuing make sure your board's lib folder or root filesystem has the adafruit_pcf8523.mpy module,
the adafruit_register folder, and the adafruit_bus_device folder copied over.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 18 of 36

file:///welcome-to-circuitpython/
https://github.com/adafruit/Adafruit_CircuitPython_PCF8523
file:///welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries

@_CM L + Computer » CIRCUTTPY (G) » fib » w63 W Seorch fib r
Organize » Share with = Mew folder =~ 0 @
:.~.|] Subversion - Mame = Date modified Type Size
B videos .) o N
L. adafruit_bus_device 102972007 2:51 PM File folder
| Q@ Ho || adafruit_pcf8523.mpy 10/19/2017 9:12 PM MPY File 2KB
A \. adafruit_register 10/29/2017 3:25 PM File folder
1 Computer
&, Local Disk (C:)
& CIRCUTTPY (E) &l
i o CIRCUTTPY (G:)
I -

Usage

To demonstrate the usage of the PCF8523 module you can connect to your board's serial REPL to see the output while
saving our example sketch to main.py

Next connect to the board's serial REPL so you are at the CircuitPython >>> prompt.

Then save this script to main.py (back up or remove whatever was there before)

import busio
import adafruit pcf8523
import time
import board

myI2C = busio.I2C(board.SCL, board.SDA)
rtc = adafruit pcf8523.PCF8523(myI2C)

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")

if False: # change to True if you want to write the time!
year, mon, date, hour, min, sec, wday, yday, isdst
t = time.struct time((2017, 10, 29, 15, 14, 15, 0, -1, -1))

you must set year, mon, date, hour, min, sec and weekday
yearday is not supported, isdst can be set but we don't do anything with it at this time

print("Setting time to:", t) # uncomment for debugging
rtc.datetime = t
print()
while True:
t = rtc.datetime
#print(t) # uncomment for debugging

print("The date is %s %d/%d/%d" % (days[t.tm wday], t.tm mday, t.tm mon, t.tm year))
print("The time is %d:%02d:%02d" % (t.tm hour, t.tm min, t.tm sec))

time.sleep(l) # wait a second

Setting the time

The first time you run the program, you'll need to set the time

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 19 of 36

file:///welcome-to-circuitpython/the-repl

find these lines:

if False: # change to True if you want to write the time!
year, mon, date, hour, min, sec, wday, yday, isdst
t = time.struct time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
you must set year, mon, date, hour, min, sec and weekday
yearday is not supported, isdst can be set but we don't do anything with it at this time

Change the False to True in the first line, and update the time.struct_time to have the current time starting from year to
weekday . The last two entries can stay at -1

Re-run the sketch by saving and you'll see this out of the REPL:

Adafiust CroutPython RERL "
main.py output: d '
Setting time to: struct_time(tm_year=2017, tm_mon=10, tm_mday=29, |
tm_hour=15, tm_min=14, tm_sec=15, tm_wday=0, tm_yday=-1, tm_isdst=-1)

The date s Sunday 29/10/2017
The time is 15:14:15
The date 1s Sunday 29/10/2017
The time 4s 15:14:16
The date 1s Sunday 29/10/2017
The time s 15:14:17
The date s Sunday 29/10/2017
The time s 15:14:18

Note the part where the program says it is Setting time to:
Now you can go back and change the if True to if False and save, so you don't re-set the RTC again.

The script will now output the time and date

main.py ocutput:

The date 1is Sunday 29/10/2017
The time s 15:14:56

The date is Sunday 29/10/2017
The time 1is 15:14:57

The date 4s Sunday 29/10/2017
The time 1s 15:14:58

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 20 of 36

Using the SD Card

The other half of the adalogger FeatherWing is the SD card. The SD card is how we store long term data. While the
Feather may have a permanent EEPROM storage, its only a couple hundred bytes - tiny compared to a 2 gig SD card.
SD cards are so cheap and easy to get, its an obvious choice for long term storage so we use them for the 'Wing!

The FeatherWing kit doesn't come with an SD card but we carry one in the shop that is guaranteed to work. Pretty
much any SD card should work but be aware that some cheap cards are 'fakes' and can cause headaches.

4GB Blank SD/MicroSD Memory Card
PRODUCT ID: 102

% B
3

@
-]
(o)
L3

795
IN STOCK

You'll also need a way to read and write from the SD card. Sometimes you can use your camera and MP3 player -
when its plugged in you will be able to see it as a disk. Or you may need an SD card reader. The Wing doesnt have the
ability to display the SD card as a 'hard disk' like some MP3 players or games, the Feather does not have the hardware
for that, so you will need an external reader!

USB MicroSD Card Reader/Writer - microSD / microSDHC /
microSDXC

PRODUCT ID: 939

s
IN STOCK

Formatting under Windows/Mac

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem. However you may have
problems with how the factory formats the card, or if it's an old card it needs to be reformatted. The Arduino SD library
we use supports both FAT16 and FAT32 filesystems. If you have a very small SD card, say 8-32 Megabytes you might
find it is formatted FAT12 which isnt supported. You'll have to reformat these card. Either way, its always good idea to
format the card before using, even if its new! Note that formatting will erase the card so save anything you want first

We strongly recommend you use the official SD card formatter utility - written by the SD association it solves

many problems that come with bad formatting!

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 21 of 36

http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
https://www.adafruit.com/product/102
http://www.adafruit.com/products/939
https://www.adafruit.com/product/939

The official SD formatter is available from https://www.sdcard.org/downloads/formatter_4/

Download it and run it on your computer, there's also a manual linked from that page for use

Download the official SD Formatter software for

Windows

https://adafru.it/cfL

Get Card Info

The Arduino SD Card library has a built in example that will help you test the Wing and your connections

Open the file Cardinfo example sketch in the SD library:

EIX]

&@ sketch_apr0ia | Arduino 0022
Edit Sketch Tools Help

Mew ChrlHh
Qpen, ., Chrl+0
Sketchbook, »
Examples 1.Basics 3 -
Close Chrl+W 2.Digital »
Save Ctrl+s 3.Analog 4
Save As... Chel+5Shift+5 4. Cammunication
Upload to [j0 Board Chrl4+-LU 5.Control 14
6.5ensars [
Page Setup Ckrl+-shift+P 7.Display ,
Prink Chrl+P 8.5trings ,
Preferences CtrH+-Comma ArduinalsP
Quit Chrl+ ArduinaTestSuite
EEPRCIM]
Ethernet »
Firmata ¥
Matrix [
» ZardInfo
SErvD p| Datalogger
SP1 » DumpFile
Stepper p| Files w
< Wire y o listiles 3

Readwirite

This sketch will not write any data to the card, just tell you if it managed to recognize it, and some information about it.
This can be very useful when trying to figure out whether an SD card is supported. Before trying out a new card,

please try out this sketch!
Go to the beginning of the sketch and make sure that the chipSelect line is correct.

® On ESP8266, the SD CS pin is on GPIO 15
e On Atmel MO or 32u4 it's on GPIO 10

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing

Page 22 of 36

https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/

On Teensy 3.x it's on GPIO 10
On STM32F2/WICED, its on PB5
On ESP32, it's on GPIO 33

On nRF52, it's on GPIO 11

&8 Cardinfo | Arduino 0022
File Edit Sketch Tools Help

5dFile root;

J4 change this to match your 5D shield or module;

S Adafruit 5D shields and modules: pin 10
A4 Gparkfun 3D shield: pin §

const int chipSelect = 10;

Serial.begin(9600);

Serial.print("\nInitializing 5D card...™);

44 On the Ethernet Shield, C3 is pin 4. It's set as an output by
S/ Note that even if it's not used as the C5 pin, the hardware 35
A4 110 on most Arduino boards, 53 on the Mega) must be left as an
A4 or the 53D library functions will not work.

pinMode (10, OUTPUT): /4 change this to 53 on a mega

44 we'll use the initialigation code from the utility libraries =
| ¥

|

OK, now insert the micro SD card into the FeatherWing and upload the sketch

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 23 of 36

Open up the Serial Monitor and type in a character into the text box (& hit send) when prompted. You'll probably get

something like the following:

H Send]
Initializing 5D card.. Wiring is correct and a card is present. L
Card type: 35DE2
Volume type is FAT1E
Tolume size (bytes): 197EEET7E08
Tolume size (Ebhytes): 13E8%39F
Tolume size (Mbhytes): 1883
Files found on the card (name, date and size in bytes):
EENCH.DAT Z000-01-01 00:00:00 S000000
OLDLOGS / 2011-04-01 1&:58:02
THTES Z011-04-01 17:00:16
GPSLOGLO.THT 1%80-00-00 00:00:00 118936871
GPSLOGOO.TXT 1980-00-00 00:00:00 64524
GPSLOGOL.TXT 1%80-00-00 00:00:00 zZ47
GPSLOGOZ.TKXT 1380-00-00 00:00:00 SZ&0810
GPSLOGO4 . TKT 1380-00-00 00:00:00 47
GPSLOGOS. TXT 1580-00-00 00:00:00 995754
GPSLOGOT.TXT 1580-00-00 00:00:00 1l0E54
GPSLOGOS.TXT 1580-00-00 00:00:00 1l0E%
GPSLOGOZ.TXT 1580-00-00 00:00:00 z&2701
GPSLOGOS.THT 1580-00-00 00:00:00 21243
GPSLOGOS.TKT 1380-00-00 00:00:00 410
[#] Autascrall |Nl:| line: ending Vl |9600 biaud V|

Its mostly gibberish, but its useful to see the Volume type is FAT16 part as well as the size of the card (about 2 GB

which is what it should be) etc.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing

Page 24 of 36

If you have a bad card, which seems to happen more with ripoff version of good brands, you might see:

COMB

type any character to start

init time: 1539

Card type: BD1

MHanufacturer ID: 0

0EM ID:

Product: NF4

Version: 1.0

Serial number: E319733278
Manufacturing date: &/200%

cardSize: 1984F51lz (E1lZ byte blocks)
flazshErasefize: &4 blocks

eraseSingleBlock: true

part , boot type, start, length
i1,0,0,0,0

e H Y,

z,0,0,0,.0

e H Y,

=2,0,0,0,.0

4,0,0,0,0

vol_ init failed
8D error
errorCode: 0

errorData: 0

b

9600 baud w

The card mostly responded, but the data is all bad. Note that the Product ID is "N/A" and there is no Manufacturer ID
or OEM ID. This card returned some SD errors. Its basically a bad scene, | only keep this card around to use as an
example of a bad card! If you get something like this (where there is a response but its corrupted) you should toss the
card

Finally, try taking out the SD card and running the sketch again, you'll get the following,

H Send]

Eal
Initiali=ing 5D card. . _ initiali=mation failed. Things to check: B
* iz a card iz inserted?
* I= your wiring correct?

* did you changes the chipSelect pin to match your shisld or module?

Aukascroll |Nl:| line: ending Vl |9600 baud V|

It couldn't even initialize the SD card. This can also happen if there's a soldering error or if the card is really damaged

If you're having SD card problems, we suggest using the SD formatter mentioned above first to make sure the card is
clean and ready to use!

Next steps!

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 25 of 36

Once you know the SD card works, check out the SD card library examples, SD library documentation and Notes!

Example logging sketch

If you want to try saving data to the SD card in the simplest sketch, try this example. You can adjust the delay() to set
how often analog data is read from pin AO and saved to the SD card. The red LED will blink if there's an error, and the
green LED will blink when data is written to the SD card.

Note that to save power, we bufferthe data, so you will only 'save' data truely every 50 datapoints (512 total characters
written)

You will need to change the sketch's SD_CS pin to match the SD card's Chip Select pin on your Feather!

#include <SPIl.h>
#include <SD.h>

/I Set the pins used
#define cardSelect 4

File logfile;

/I blink out an error code
void error(uint8_t errno) {
while(1) {
uint8_ti;
for (i=0; i<errno; i++) {
digitalWrite(13, HIGH);
delay(100);
digitalWrite(13, LOW);
delay(100);
}
for (i=errno; i<10; i++) {
delay(200);
}
}
}

/I This line is not needed if you have Adafruit SAMD board package 1.6.2+
/I #define Serial SerialUSB

void setup() {
// connect at 115200 so we can read the GPS fast enough and echo without dropping chars
// also spit it out
Serial.begin(115200);
Serial.printin("\r\nAnalog logger test");
pinMode(13, OUTPUT);

/I see if the card is present and can be initialized:
if (ISD.begin(cardSelect)) {

Serial.printin("Card init. failed!");

error(2);
}

char filename[15];

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 26 of 36

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/Reference/SDCardNotes

strepy(filename, "ANALOGOO0.TXT");
for (Uint8_ti=0;i< 100; i++) {
filename[6] = '0" + i/10;
filename[7] ='0" + i%10;
/I create if does not exist, do not open existing, write, sync after write
if (! SD.exists(filename)) {
break;
}
}

logfile = SD.open(filename, FILE_WRITE);
if(! logfile) {
Serial.print("Couldnt create ");
Serial.printin(filename);
error(3);

}
Serial.print("Writing to ");
Serial.printin(filename);

pinMode(13, OUTPUT);

pinMode(8, OUTPUT);

Serial.printin("Ready!");
}

uint8_ti=0;

void loop() {
digitalWrite(8, HIGH);
logfile.print("A0 = "); logfile.printin(analogRead(0));
Serial.print("A0 = "); Serial.printin(analogRead(0));
digitalWrite(8, LOW);

delay(100);
}

adalogger.ino hosted with *® by GitHub view raw

If you really want to make sure you save every data point, put a

logfile.flush();

right after the logdfile.print's however this will cause the adalogger to draw a lot more power, maybe about 3x as much
on average (30mA avg rather than about 10mA)

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 27 of 36

https://gist.github.com/ladyada/13efab4022b7358033c7/raw/8387409d8f9b1c2157bf8c9e78dff3c0a3b0007d/adalogger.ino
https://gist.github.com/ladyada/13efab4022b7358033c7#file-adalogger-ino
https://github.com

CircuitPython
Adafruit CircuitPython Module Install

To use a microSD card with your Adafruit CircuitPython board you'll need to install
the Adafruit_CircuitPython_SD module on your board.

First make sure you are running the latest version of Adafruit CircuitPython for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle. Our introduction guide has a great page on how to install the
library bundle for both express and non-express boards. Be sure to use the latest CircuitPython Bundle as it includes
an updated version of the SD card module with a few necessary fixes!

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

e adafruit_sdcard.mpy
e adafruit_bus_device

If your board doesn't support USB mass storage, like the ESP8266, thenuse a tool like ampy to copy the file to the
board. You can use the latest version of ampy and its new directory copy command to easily move module directories
to the board.

Before continuing make sure your board's lib folder or root filesystem has the adafruit_sdcard.mpy and
adafruit_bus_device modules copied over.

L lib
< t =l o ®m- s8-8 || o g
- . boot_out.1an W adalruit bo0SS mpy
o CICT acafruit_bus_device >
adafrult_circultplaygrownd =
B Repositories W sclatruit_datstasmoy
o I adafruit_ds3231.mpy
adafnuit_hid L
1 airorep adafruit_M16k33 .
% Applications I adafuit_is31113731.moy
adafnuil_lisddh L
[Desktop adafruit_max? 219 .
B Documents W adafruit_max31855.mpy
I adabnuit_mepOB0E.mpy
° Dovmioads adafruit_mari21 L
D adafruit_peaBBEas "
i M acafruii_pel852 3. mpy
& tony-imac adatiuit_register -
@ Remate Disc adafrult_rgh_désplay L]
‘: ™ = W adatruit_rittlmgy
= B adafruit_sdcard mpy
Bharnd I adafruit_si?021.mpy
= adafult_ssd1306 L
L4
i TonyDiskStatian I aciafruit_tharméstos. mpy
Tags adafuit_wavefarm L
B neapixel.mpy
& Red README txt
Orange W simplaic mpy
Yaliow wpdate_linux sh
m updabe_macosx.command
0 Ghéen VERSIOMNS 1t
@ Blue
@ Purple
® Gy
© All Tags_.

The following section will show how to initialize the SD card and read & write data to it from the board's Python prompt
/ REPL.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 28 of 36

https://github.com/adafruit/Adafruit_CircuitPython_SD
file:///welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
file:///micropython-basics-load-files-and-run-code
file:///micropython-basics-load-files-and-run-code/file-operations#copy-directories-to-board

Next connect to the board's serial REPL so you are at the CircuitPython >>> prompt.

Initialize & Mount SD Card Filesystem

Before you can use the microSD card you need to initialize its SPI connection and mount its filesystem. First import the
necessary modules to initialize the SPI and CS line physical connections:

import board
import busio
import digitalio

Next create the SPI bus and a digital output for the microSD card's chip select line (be sure to select the right pin name
or number for your wiring):

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
Use board.SD CS for Feather MO Adalogger

cs = digitalio.DigitalInOut(board.SD CS)

Or use a GPIO pin like 15 for ESP8266 wiring:

#cs = digitalio.DigitalInOut(board.GPIO015)

Now import modules to access the SD card and filesystem:

import adafruit sdcard
import storage

At this point you're ready to create the microSD card object and the filesystem object:

sdcard = adafruit sdcard.SDCard(spi, cs)
vfs = storage.VfsFat(sdcard)

Notice the adafruit_sdcard module has a SDCard class which contains all the logic for talking to the microSD card at a
low level. This class needs to be told the SPI bus and chip select digital IO pin in its initializer.

After a SDCard class is created it can be passed to the storage module's VfsFat class. This class has all the logic for
translating CircuitPython filesystem calls into low level microSD card access. Both the SDCard and VfsFat class
instances are required to mount the card as a new filesystem.

Finally you can mount the microSD card's filesystem into the CircuitPython filesystem. For example to make the path
/sd on the CircuitPython filesystem read and write from the card run this command:

storage.mount(vfs, "/sd")

The first parameter to the storage.mount command is the VfsFat class instance that was created above, and the
second parameter is the location within the CircuitPython filesystem that you'd like to 'place' the microSD card.
Remember the mount location as you'll need it to read and write files on the card!

Reading & Writing Data

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 29 of 36

file:///welcome-to-circuitpython/the-repl

Once the microSD card is mounted inside CircuitPython's filesystem you're ready to read and write data from it.
Reading and writing data is simple using Python's file operations like open, close, read, and write. The beauty of
CircuitPython and MicroPython is that they try to be as similar to desktop Python as possible, including access to files.

For example to create a file and write a line of text to it you can run:

with open("/sd/test.txt", "w") as f:
f.write("Hello world!\r\n")

Notice the with statement is used to create a context manager that opens and automatically closes the file. This is
handy because with file access you Python you must close the file when you're done or else all the data you thought
was written might be lost!

The open function is used to open the file by telling it the path to it, and the mode (w for writing). Notice the path is
under /sd, /sd/test.txt. This means the file will be created on the microSD card that was mounted as that path.

Inside the context manager you can access the f variable to operate on the file while it's open. The write function is
called to write a line of text to the file. Notice that unlike a print statement you need to end the string passed to write
with explicit carriage returns and new lines.

You can also open a file and read a line from it with similar code:

with open("/sd/test.txt", "r") as f:
print("Read line from file:")
print(f.readline())

If you wanted to read and print all of the lines from a file you could call readline in a loop. Once readline reaches the
end of the file it will return an empty string so you know when to stop:

with open("/sd/test.txt", "r") as f:
print("Printing lines in file:")
line = f.readline()

while line != '':
print(line)
line = f.readline()

There's even a readlines function that will read all of the lines in the file and return them in an array of lines. Be careful
though as this means the entire file must be loaded into memory, so if the file is very large you might run out of
memory. If you know your file is very small you can use it though:

with open("/sd/test.txt", "r") as f:
lines = f.readlines()
print("Printing lines in file:")
for line in lines:

print(line)

Finally one other very common file scenario is opening a file to add new data at the end, or append data. This works
exactly the same as in Python and the open function can be told you'd like to append instead of erase and write new
data (what normally happens with the w option for open). For example to add a line to the file:

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 30 of 36

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/io.html#io.IOBase.close
https://docs.python.org/3/library/io.html#io.RawIOBase.read
https://docs.python.org/3/library/io.html#io.RawIOBase.write

with open("/sd/test.txt", "a") as f:
f.write("This is another line!\r\n")

Notice the a option in the open function--this tells Python to add data at the end of the file instead of erasing it and
starting over at the top. Try reading the file with the code above to see the new line that was added!

That's all there is to manipulating files on microSD cards with CircuitPython!

Here are a few more complete examples of using a SD card from the Trinket MO CircuitPython guides. These are
great as a reference for more SD card usage.

List Files

Load this into main.py:

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 31 of 36

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-spi-sd-card

import adafruit sdcard
import busio

import digitalio
import board

import storage

import os

Use any pin that is not taken by SPI
SD CS = board.DO

Connect to the card and mount the filesystem.
spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
cs = digitalio.DigitalInOut(SD CS)

sdcard = adafruit sdcard.SDCard(spi, cs)

vfs = storage.VfsFat(sdcard)

storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

This helper function will print the contents of the SD
def print directory(path, tabs = 0):
for file in os.listdir(path):
stats = os.stat(path+"/"+file)
filesize = stats[6]
isdir = stats[0] & 0x4000

if filesize < 1000:

sizestr = str(filesize) + " by"
elif filesize < 1000000:

sizestr = "%0.1f KB" % (filesize/1000)
else:

sizestr = "%0.1f MB" % (filesize/1000000)
prettyprintname = ""
for 1 in range(tabs):

prettyprintname +=
prettyprintname += file
if isdir:

prettyprintname += "/"

print('{0:<40} Size: {1:>10}'.format(prettyprintname, sizestr))

recursively print directory contents
if isdir:
print directory(path+"/"+file, tabs+1)

print("Files on filesystem:")
print(" ")
print directory("/sd")

Once it's loaded up, open up the REPL (and restart it with *D if necessary) to get a printout of all the files included. We
recursively print out all files and also the filesize. This is a good demo to start with because you can at least tell if your

files exist!

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing

Page 32 of 36

Immm
Files on filesystem:

TeensyDemo. bin Size: 8.4 MB
SEARCH.HTM Size: 75.5 KB
fw.bin Size: 18.0 KB
System Volume Informaticn/ Size: 0 by
WPSettings.dat Size: 12 by
IndexervVolumeGuid Size: 76 by
test. txt~ Size: 254 by
test.txt Size: 12 by
binaries/ Size: @ by
2772cipy.bin Size: 239.6 KB
2772test.bin Size: 29.6 KB
bootload.bin Size: 8.2 KB
I 2772blnk.bin Size: 1.6 KB

But you probably want to do a little more, lets log the temperature from the chip to a file.

Here's the new script

import adafruit sdcard
import microcontroller
import busio

import digitalio
import board

import storage

import os

import time

Use any pin that is not taken by SPI
SD CS = board.DO

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

Connect to the card and mount the filesystem.
spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
cs = digitalio.DigitalInOut(SD CS)

sdcard = adafruit sdcard.SDCard(spi, cs)

vfs = storage.VfsFat(sdcard)

storage.mount(vfs, "/sd")

Use the filesystem as normal! Our files are under /sd

print("Logging temperature to filesystem")
append to the file!
while True:
open file for append
with open("/sd/temperature.txt", "a") as f:
led.value = True # turn on LED to indicate we're writing to the file
t = microcontroller.cpu.temperature
print("Temperature = %0.1f" % t)
f.write("%0.1f\n" % t)
led.value = False # turn off LED to indicate we're done
file is saved
time.sleep(1)

When saved, the Trinket will start saving the temperature once per second to the SD card under the

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing

Page 33 of 36

file temperature.txt

2 :I
n Use the filesystem as normal! Our file ire under
24

i 1 print("Logging temperature to filesystem")
= & append to the file!l
27 while True:
ol pen file for append J
= with open("/sd/temperature.txt", "a") as f:

| 0 | led.value = True # turn on LED to indicate we're writing to the file I
o £ = S s s +eallar ema e e e ; :”

Adafrust Croutython REPL _k
Auto-reload s on. Simply save files over USB to run them or enter REPL to disable. .
main.py output:

Logging temperature to filesystem

Temperature = 26.1

26.2

23.9 |
6.0 -
adotrst L}

The key part of this demo is in these lines:

Temperature
Temperature
Temperature

print("Logging temperature to filesystem")
append to the file!
while True:
open file for append
with open("/sd/temperature.txt", "a") as f:
led.value = True # turn on LED to indicate we're writing to the file
t = microcontroller.cpu.temperature
print("Temperature = %0.1f" % t)
f.write("%0.1f\n" % t)
led.value = False # turn off LED to indicate we're done
file is saved
time.sleep(1)

This is a slightly complex demo but it's for a good reason. We use with (a 'context’) to open the file for appending, that
way the file is only opened for the very short time its written to. This is safer because then if the SD card is removed or
the board turned off, all the data will be safe(r).

We use the LED to let the person using this know that the temperature is being written, it turns on just before the write
and then off right after.

After the LED is turned off the with ends and the context closes, the file is safely stored.

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 34 of 36

Downloads
Datasheets and Files
® EagleCAD PCB files on GitHub

® Fritzing object in Adafruit Fritzing library
e PCF8523 product page

Schematic
A D 1 i Y
3 2 =
1 |
B . H & | B

iR
;

o = *ﬂdafruit 0

adalogger featheruing

281, | Sheet: 171

Adairuit Industries
S [&

Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-adalogger-featherwing Page 35 of 36

https://github.com/adafruit/Adafruit-Adalogger-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library/
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523

© Adafruit Industries Last Updated: 2018-01-18 06:15:18 PM UTC Page 36 of 36

	Guide Contents
	Overview
	Pinouts
	Power Pins
	RTC & I2C Pins
	SD & SPI Pins
	Assembly
	Using the Real Time Clock
	What is a Real Time Clock?

	Battery Backup
	CR1220 12mm Diameter - 3V Lithium Coin Cell Battery

	RTC with Arduino
	Wiring
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time
	RTC with CircuitPython
	Wiring
	Adafruit CircuitPython Library Install
	Usage
	Setting the time
	Using the SD Card
	4GB Blank SD/MicroSD Memory Card
	USB MicroSD Card Reader/Writer - microSD / microSDHC / microSDXC
	Formatting under Windows/Mac

	Get Card Info
	Next steps!
	Example logging sketch
	CircuitPython
	Adafruit CircuitPython Module Install
	Usage
	Initialize & Mount SD Card Filesystem
	Reading & Writing Data

	List Files
	Downloads
	Datasheets and Files
	Schematic
	Fabrication Print

