
Urban Farming 101

Introduction

In this activity, we will turn our MKR IoT Carrier into an urban farming device! We will
use the carrier’s sensors and a moisture sensor to analyze the environment for a plant,
use artificial lighting and introduce relays – an electronic component used to activate
high-power devices. We will be focusing on setting up a dashboard in Arduino IoT
Cloud, where we can read data, and control different components.

Learning Objectives

The goals of this activity are:

Set up an urban farming environment
Understand how relays work
Understand how the moisture sensor works
Create an ideal environment for a plant

Activity Complexity

This activity requires having previous knowledge in:

Configuring Arduino IoT Cloud
Working with the carrier’s different sensors

Components Used

MKR WiFi 1010
MKR IoT Carrier
Moisture sensor
Micro USB cable

Assembly

First, we need to mount the MKR WiFi 1010 on top of the MKR IoT Carrier. We then
need to plug the moisture sensor into the A5 slot on the carrier. Finally, we can connect
the micro USB cable to a computer.

1/13

What are relays

This activity will introduce a new component: the relay. A relay is a switch operating on
electricity, in other words, relays are switches controlled electrically.

Relays allow using an Arduino board to control higher power circuits than the ones that
the Arduino board is capable to control. They are typically used in industrial
applications to control high power circuits, but it is also used in cars, homes and other
electric applications. A very common example of the use of relays is the indicator light
on cars. When the driver of the car activates the indicator light, we can hear a "tick-
tack" sound, that sound is produced by a relay turning ON and OFF the light.

Relays are composed by an electromagnet that moves a tiny metallic plank, which is
called COM terminal, between two different positions NC terminal and NO terminal.
We can decide in which position the COM terminal is connected with by
activating/deactivating the electromagnet by connecting a low power signal in the
electromagnet control terminals.

We will connect the high power signals that we want to control to the COM, NO or NC
also called high power pins. Then the electromagnet control signals, called the low
power pins, to the Arduino board. This is the way in which we will control high power
signals by using our Arduino board. A relay separates the high power network from the
low power network the Arduino is operating on, and ensures that these are never
connected.

2/13

How to use the relays on the carrier

As we can see in the image above, the MKR IoT Carrier has two relays capable of
handling up to 24V each.

The connections between our high power circuti and the relays will be done through
these connectors.

In them, the round hole at the bottom in the connector is the one that we will use to
create the connections, once we introduce the cables inside them, those will be
automatically locked keeping them in the connector.

3/13

When we want to remove the cable from the connector, we will need to introduce a tool
inside the top square hole (it can be a flat screw driver, a hard piece of plastic, etc.), by
doing that, we will unlock the cable and we will be able to remove it from the connector.

Now that we know how the realys work and how to make the connections on them, let’s
take a look at the definitions of the high power pins:

NO - Stands for normally open. This means that when we write a HIGH state
to the relay, NO pin is connected with COM.

NC - Stands for normally closed. This means that when we write a LOW state
to the relay, when the relay is not supplied, NC pin is connected with COM.

COM - Stands for common and is used as the switch in a relay. When a HIGH or
LOW signal is written to the relay, the common pin will be between either NO or
NC depending on what configuration we are using.

The L1 and L2 LEDs on the carrier allow us to know in a visual way what is the state of
the relays, if the LED is ON, it means that the the COM and the NC terminal of the relay
are connected and if the LED is OFF it means that COM and NO are connected.

We do not have to consider the low power pins, since they are already connected to the
Arduino board through the MKR IoT Carrier.

How to set up a NC or NO circuit

The relays we are using have a NO (normally open) configuration, meaning that the NO
and COM terminals are connected by default and when we put a high level on the low
power terminals we will connect the NC and COM terminals.

The following image shows how we will need to make the connections of the higher
power source and components to the relay.

4/13

There are as well relays that use NC configuration, meaning that the NC and COM
terminals are connected by default and when we put a high level on the low power
terminals we will connect the NO and COM terminals.

If we use a normally closed (NC) configuration, the following image shows how the
higher power source and components should be connected to the relay.

Important! In this activity, we will only be testing out the functionality of the relay and
how we can control it. The relays on the shield only support up to 24V, meaning that they
are not intended to work with higher voltages than that. Like mentioned before, a standard
power outlet is typically around 220-240V, which is 10 times as much as the relay is
designed for, and can cause immediate danger.

5/13

Moisture sensor

The moisture sensor is one of the most basic, yet powerful, sensors out there. It has two
exposed conductors and is basically a variable resistor. When it is exposed to water, the
resistance drops, as the conductivity is increased, while less water means higher
resistance.

If we place this sensor in a plant pot that has recently been watered, the resistance is
lower, and if we do a reading on it, we can measure how moist the plant is. But if we
place the sensor into a plant pot that has not been watered in days, it is most likely going
to show 1023 (completely dry). This gives us immediate feedback: we need to water our
plants, otherwise they will not survive!

This is an incredibly useful sensor for urban farming projects, and there are thousands
of cool inventions that have been made using moisture sensors all over the world!

Configuring the IoT cloud

In this activity, we will be using Ardunio IoT Cloud to both monitor sensors and control
different actuators on the carrier. As we have done in the previous activities, we will
first need to set up some properties in the cloud. Let’s navigate back to Arduino IoT
Cloud.

We will start by creating a new thing in Arduino IoT Cloud, link the thing to our board,
and then we will create the properties that is shown in the table below.

Name Data Type
Value
Range Function Permission

humidity float 0 - 100 Display humidity Read only

temperature float -40 - 100 Display temperature Read only

light int 0 - 5000 Measure illuminance Read only

moistValue int 0 - 100 Display moist level Read only

relay_1 Boolean
ON/OFF

n/a Turn on or off relay 1 Read &
write

relay_2 Boolean
ON/OFF

n/a Turn on or off relay 2 Read &
write

rgbColor colored
light

n/a Control the color of the
RGBs on the carrier

Read &
write

6/13

https://create.arduino.cc/iot/

updateDisplay Boolean
ON/OFF

n/a Refresh the display on the
carrier

Read &
write

Name Data Type
Value
Range Function Permission

When creating the properties with the permission Read only, we also need to change it
to update every second. For the Read & write properties, we need to set it to update
whenever the value changes. This ensures that sensor readings only happen every 1
second, providing more consistent data.

When we are done creating the properties, we can simply click Edit sketch and a code
will be automatically generated.

Gradually building code

Now it’s time to complete the code! We will begin by including the library to control the
MKR IoT Carrier. We will also set CARRIER_CASE to false . If we are going to use the
plastic encasing, we can switch this variable to true .

Here we will also define the pin that we will connect the moisture sensor to, A5 ,
followed by two empty strings. These strings will be updated with the state of its
corresponding relays, but we will go through that later on.

In the void setup() , we will only add the commands while(!Serial); and
carrier.begin(); which allows us to initialize the carrier library by opening the Serial

Monitor.

In the void loop() , there are two main things that happen: we create an if/else
statement for the relays and we read each sensor in the project.

The if/else statements are quite simple. If we activate relay_1 from the cloud
dashboard, first the relay turns ON, and then changes the relayState1 string to ON. If
we turn it OFF, the relay turns off and changes relayState1 to OFF. The exact same
thing happens with relay_2 , but it controls the second relay instead.

Then, we do readings to get the current light , temperature and humidity . But for
this activity, we will also use the moisture sensor. When we are reading an analog
component, we will get a value between 0-1023. This value range does not make much
sense, so let’s simplify it a little bit by using the map() function.

We can use this command:

moistValue = map(rawMoistValue, 0, 1023, 100, 0);
7/13

This basically changes the value range from 0 - 1023 to 100 - 0. Now, if a plant is really
dry, the value will be really low, and if the plant is really moist, the value will be very
high. This way, we can measure from a scale of 0 - 100 instead of 1023 - 0.

After we have finished void loop() , let’s take a look at the functions that were generated
from the Arduino IoT cloud dashboard. The first two – onRelay1Change() and
onRelay2Change() – will be left empty since we already set these up in the loop. The
onRgbColorChange() will use the same code we used in Activity 4, Remote Triggers to

control the RGBs on the carrier from the cloud dashboard.

The final function of this program is to remotely update the display on the carrier with
the values from the sensors and the state of the relays. These are printed in different
colors on the same screen. This function is triggered from the cloud dashboard. At the
end of this function, we use the command updateDisplay = false; which makes sure
that the Boolean is reset in the dashboard.

Once we are finished with the code, we need to upload it to our board. Once that is done,
we need to open the Serial Monitor to initialize the carrier library. After it has made a
connection to the cloud, we can navigate to the Arduino IoT cloud dashboard.

Testing it out

Great job! We have now created a pretty sophisticated application to measure and
control different aspects of an urban farming environment. The last step before we can
test it out is to create a dashboard for our activity. Navigate back to the cloud, and click
on the Dashboards button, and create a new dashboard. We can name it something
simple, such as "Activity 8".

We will need to create eight widgets in total, and we can use the table below to set them
up and link them to our properties properly:

Property Widget Value Range

humidity Percentage 0 - 100

temperature Gauge -40 - 100

light Value 0 - 5000

moistValue Percentage 0 - 100
8/13

https://explore-iot.arduino.cc/iotsk/module/iot-starter-kit/lesson/remote-triggers

relay_1 Switch n/a

relay_2 Switch n/a

rgbColor Colored Light n/a

updateDisplay Switch n/a

Property Widget Value Range

In this dashboard, we have four widgets used to monitor the sensors, and four
properties used to control different actuators. Now we can place the MKR IoT Carrier in
the plastic casing, and place it close to a plant that we want to monitor! In this activity,
we will be using the aloe vera plant as an example.

Once we have set up the dashboard, it should look similar to the image below, but we
can organize the dashboard however we want to!

So let’s see what the data we record from the sensors can tell us, and what actions we
can use to control the environment. But first, let’s pick a popular plant and see what
conditions that plant thrives in best!

Creating an ideal environment

In this activity, we used an aloe vera plant, which is a cheap and durable plant that can
be found in homes all over the world. But the plant has some ideal conditions; let’s see
how we can set that up. The table below describes the ideal conditions for the aloe vera
plant.

9/13

Relative
humidity Temperature Sun light Moisture

40% 15 - 24 Celsius (60-75
Fahrenheit)

6-8 hours a
day

Low -
Medium

Using this plant as a reference, let’s see how we can improve its environment.

Humidity & temperature: If we are above the 40% relative humidity mark, we
need to take action. This can be done by either placing a fan close to it, placing it
close to an air conditioner or close to an open window. This will also fix the
problem of high temperature as these two measurements are closely connected to
one another.
Moisture: To measure the moisture of the plant, we can gently place the
moisture sensor in the plant pot. We want to keep this value relatively close to
50%. This means that we should not water the plant too much, but not too little –
just a little bit every so often!
Sunlight: The plant does need sunlight, but can survive a bit in the shade. The
recommended sun dosage per day is around 6-8 hours. If we place the MKR IoT
Carrier next to the plant, the light sensor gives us information on whether the spot
receives enough sunlight. The value that is recorded by the light sensor is recorded
in LUX, and this should normally be over 200 (this measurement was taken from
placing it in a window during sun hours).

All of the above can be measured with the sensors in the carrier, but we can also be
creative on how we can use the actuators on the carrier:

Relays: While there are no high power sources or components included in the kit,
we can start getting creative on how to use them! There are two popular
components that are typically controlled by a relay in an urban farming setting:
water pumps and fans. If the moisture is low, we can remotely control a pump
that is connected to a water source, and pump water into the plant! If the
temperature and humidity is too high, we can enable a fan that brings cool air
towards the plant.

10/13

RGBs: The RGBs on the carrier can be used as artificial lighting if angled
correctly. This method is particularly good to use during long dark months, where
sunlight is rare. If we activate the RGBs, and place them above the plant, we can
simulate a UV lamp. The RGBs are of course not very powerful, and there are
much more powerful lamps that we can use for this purpose, but then we need to
use the relays.

Challenge

In this activity, we have created an urban farming setup that can be remotely controlled
and monitored. But what if we wanted to add a bit of personality to the project?

11/13

Earlier in this activity, we worked with both Strings and if/else conditionals. The
challenge of this activity, is to:

Create a property named "plant_feeling" in Arduino IoT Cloud of the String data
type.
Create a conditional statement that can express the plant’s “emotions” in words.
For example, if the humidity or temperature is too high, or the moisture is too low,
the plant is “unhappy”.
Read the emotion of the plant in the Arduino IoT Cloud dashboard.

Wrapping up

In this activity, we built a practical urban farming application. This setup allows us to
measure not only the environment of a plant but also how we can remotely control
actuators to change the environment. We learned about what relays are, what they can
be used for, and how to write a program to control them. We also learned how to use
the moisture sensor, an essential sensor to use for urban farming projects, and how to
map the sensor values to a range that makes more sense!

By using Arduino IoT Cloud and the MKR IoT Carrier, we were able to test several
aspects of an urban farming environment, but we can take things further than that! We
can, for example, build a greenhouse that has artificial lighting, a cooling fan and a
water pump. These three can create their own little ecosystem for plants to thrive in,
and we can set it up so we don’t have to physically interact with it by controlling it
remotely from the cloud, or just automate the entire process!

To finish up this activity, let’s put back the components we have used in this activity
inside the kit box, and log out of the Arduino Create / Arduino IoT Cloud environment.

12/13

13/13

	Urban Farming 101
	Introduction
	Learning Objectives
	Activity Complexity
	Components Used
	Assembly
	What are relays
	How to use the relays on the carrier
	How to set up a NC or NO circuit
	Moisture sensor
	Configuring the IoT cloud
	Gradually building code
	Testing it out
	Creating an ideal environment
	Challenge
	Wrapping up

