
Adafruit ItsyBitsy nRF52840 Express
Created by Kattni Rembor

Last updated on 2020-01-27 03:54:22 PM UTC

Overview

What's smaller than a Feather but larger than a Trinket? It's an Adafruit ItsyBitsy nRF52840 Express featuring the
Nordic nRF52840 Bluetooth LE processor! Teensy & powerful, with an fast nRF52840 Cortex M4 processor running at
64 MHz and 1 MB of FLASH - this microcontroller board is perfect when you want something very compact, with a
heap-load of memory and Bluetooth LE support This Itsy is your best option for tiny wireless connectivity - it can act as
both a BLE central and peripheral, with support in both Arduino and CircuitPython.

ItsyBitsy nRF52840 Express is only 1.4" long by 0.7" wide, but has 6 power pins, 21 digital GPIO pins (6 of which can be

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 7 of 179

https://www.adafruit.com/product/2124

analog in). It's the same chip as the Feather nRF52840 (https://adafru.it/DLQ) but really really small. So it's great for
those really compact builds. It even comes with 2MB of QSPI Flash built in, for data logging, file storage, or
CircuitPython code.

The most exciting part of the ItsyBitsy is that while we ship it with an Arduino IDE compatible demo, you can also install
CircuitPython on board with only a few clicks. When you plug it in, it will show up as a very small disk drive with
code.py on it. Edit code.py with your favorite text editor to build your wireless-enabled project using Python, the most
popular programming language. No installs, IDE or compiler needed, so you can use it on any computer, even
ChromeBooks or computers you can't install software on. When you're done, unplug the Itsy' and your code will go
with you.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 8 of 179

https://www.adafruit.com/product/4062

Here are some of the updates you can look forward to when using ItsyBitsy nRF52:

Same size, form-factor as the remaining ItsyBitsy mainboards (https://adafru.it/Ila) - with a similar but not identical
pinout (there's no pins at the end of the board like most other Itsy's due to the radio antenna being there.
Floating point support with Cortex M4 DSP instructions (https://adafru.it/ENz)
32-bit, 3.3V logic and power with power/enable pin
1024 KB flash, 256 KB RAM
2 MB QSPI FLASH chip for storing files and CircuitPython code storage.
Native Open Source USB stack - pre-programmed with UF2 bootloader
Bluetooth Low Energy compatible 2.4GHz radio (Details available in the nRF52840 product specification)
FCC / IC / TELEC certified module
Up to +8dBm output power
21 GPIO, 6 x 12-bit ADC pins, up to 12 PWM outputs (3 PWM modules with 4 outputs each)
Red LED for general purpose blinking, mini DotStar RGB LED for colorful feedback
1 x Special Vhigh output pin gives you the higher voltage from VBAT or VUSB, for driving NeoPixels, servos, and
other 5V-logic devices. Digital 5 level-shifted output for high-voltage logic level output.
Native USB supported by every OS - can be used in Arduino or CircuitPython as USB serial console,
Keyboard/Mouse HID, even a little disk drive for storing Python scripts.
Can be used with Arduino IDE or CircuitPython
Comes pre-loaded with the UF2 bootloader (https://adafru.it/wbC), which looks like a USB storage key. Simply
drag firmware on to program, no special tools or drivers needed! It can be used to load up CircuitPython or
Arduino IDE

Each order comes with one assembled and tested ItsyBitsy nRF52840, with headers that can be soldered in for use
with a breadboard.

So what are you waiting for? Pick up a ItsyBitsy nRF today and be amazed at how easy and fast it is to get started with
the teensiest Bluetooth dev board we have.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 9 of 179

https://www.adafruit.com/?q=itsybitsy
https://developer.arm.com/technologies/dsp/dsp-for-cortex-m
https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython/uf2-bootloader

Pinouts

Power Pins

The ItsyBitsy nRF52840 Express has BAT G USB on the

top left, next to the micro USB port

These pins are:

BAT - battery input for an alternative power source

to USB, the voltage can only be from 3.5V to

6VDC

GND - Power/data ground

USB - This is the same pin as the MicroUSB

connector's 5V USB power pin. This should be

used as an output to get 5V power from the USB

port. Say if you need to power a bunch of

NeoPixels or servos.

You can always put any voltage you like into BAT and the circuitry will switch between BAT and USB dynamically for
you. That means you can have a Battery backup that only gets enabled when USB is disconnected.

If you want to add rechargeable power, a LiPoly backpack can be soldered into these three pins that will let you have a
battery that is automatically recharged whenever USB is plugged in, then switches to LiPoly when on the go:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 10 of 179

https://learn.adafruit.com/assets/86997

In addition to the three standard power pins, the ItsyBitsy nRF52840 Express has a few more pins available for power
sourcing:

3V - this is the regulated output from the onboard regulator. You can draw 500mA whether powered by USB or
battery.
EN - connected to the regulator enable, it will let you shut off power - when running on battery only. But at least
you don't have to cut a trace or wire to your battery. This pin does not affect power when using USB
Vhi - this is a special pin! It is a dual-Schottky-diode connected output from BAT and USB. This means this will
always have the higher-of-the-two voltages, but will always have power output. The voltage will be about 5VDC
when powered by USB, but can range from 3.5-6VDC when powered from battery. It's not regulated, but it is
high-current, great for driving servos and NeoPixels.

Analog Inputs

The 7 available analog inputs (A0 .. A5 and D10 which is called A6) can be configured to generate 8, 10 or 12-bit data
(or 14-bits with over-sampling), at speeds up to 200kHz (depending on the bit-width of the values generated), based on
an internal 0.6V reference

The following default values are used:

Default voltage range: 0-3.6V (uses the internal 0.6V reference with 1/6 gain)
Default resolution: 12-bit (0..4096)
Default mV per lsb (assuming 3.6V and 12-bit resolution): 1 LSB = 0.87890625 mV

Since the AREF can be scaled internally, we don't have an external AREF pin - it's not needed!

PWM Outputs

Any GPIO pin can be configured as a PWM output, using the dedicated PWM block.

Three PWM modules can provide up to 12 PWM channels with individual frequency control in groups of up to four
channels.

I2C Pins

Adafruit LiIon/LiPoly Backpack Add-On for Pro
Trinket/ItsyBitsy

$4.95
IN STOCK

Add To Cart

Unlike digital functions, which can be remapped to any GPIO/digital pin, the ADC functionality is tied to
specified pins, A0 thru A5 and also D10/A6�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 11 of 179

https://www.adafruit.com/product/2124
https://www.adafruit.com/product/2124

I2C pins on the nRF52840 require external pullup resistors to function, which are not present on the Adafruit
nRF52840 Feather by default. You will need to supply external pullups to use these. All Adafruit I2C breakouts have
appropriate pullups on them already, so this normally won't be an issue for you.

Logic pins

This is the general purpose I/O pin set for the microcontroller. All logic except for pin 5 is 3.3V output and input. You
can usually use 3V logic as an input to 5V, but the 3V Itsy pins should not be connected to 5V!

All pins can do PWM output - nRF52840 will assign a PWM to any pin you like
All pins can be interrupt inputs - nRF52840 will assign an IRQ to any pin you like

Special GPIO

Since you have PWM/IRQ on any pin, there's not a lot of special pins - they can all pretty much do anything, like
connect a PDM microphone or encoder. Here are the somewhat special pins:

#0 / RX - GPIO #0, also receive (input) pin for Serial1
#1 / TX - GPIO #1, also transmit (output) pin for Serial1
SDA and SCL - these are the I2C hardware interface pins. There's no pull up on this pin by default so when using
with I2C, you may need a 2.2K-10K pullup on each to 3.3V. PWM output
#3 - GPIO #3 is connected to the blue LED next to the Reset button - it isn't available on the pin breakouts
#4 - GPIO #4 is connected to the SW button to the right of the micro USB connector - it isn't available on the pin
breakouts
#5 - GPIO #5. This is a special OUTPUT-only pin that can PWM. It is level-shifted up to Vhi voltage, so it's perfect
for driving NeoPixels that want a ~5V logic level input. You can use this with our NeoPixel DMA control library to
automatically write NeoPixel data without needing any processor time (https://adafru.it/BkV).
SCK/MOSI/MISO - the hardware SPI port for connecting SPI devices, you can use any pin for CS

These pins are available in CircuitPython under the board module. Names that start with # are prefixed with D and

other names are as is. So #0 / RX above is available as board.D0 and board.RX for example.

QSPI Flash and DotStar

D2 and A1 thru A5 are 'low speed' pins, they can be used for < 10KHz signals but not recommended for
higher frequencies so as to avoid radio interference. Any other pins will work at high speeds!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 12 of 179

https://github.com/adafruit/Adafruit_NeoPixel_ZeroDMA

As part of the 'Express' series of boards, this ItsyBitsy is

designed for use with CircuitPython.

To make that easy, we have added two extra parts: a

mini DotStar (RGB LED) and a 2 MB QSPI (Quad SPI)

Flash chip.

The DotStar is connected to pin #6 (clock) and #8 (data)

in Arduino, so just use our DotStar

library (https://adafru.it/zbD) and set it up as a single-LED

strand on pins 6 & 8. The DotStar is powered by the

3.3V power supply but that hasn't shown to make a big

difference in brightness or color.

The QSPI Flash is connected to 6 pins that are not brought out on the GPIO pads. QSPI is neat because it allows you to
have 4 data in/out lines instead of just SPI's single line in and single line out. This means that QSPI is at least 4 times
faster. But in reality is at least 10x faster because you can clock the QSPI peripheral much faster than a plain SPI
peripheral

We have an Arduino library here which provides QSPI interfacing for Arduino (https://adafru.it/wbt). In CircuitPython, the
QSPI flash is used natively by the interpreter and is read-only to user code, instead the Flash just shows up as the
writable disk drive!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 13 of 179

https://learn.adafruit.com/assets/87011
https://learn.adafruit.com/assets/87012
https://learn.adafruit.com/adafruit-dotstar-leds
https://github.com/adafruit/Adafruit_SPIFlash

Other Pins

A tactile switch is provided for use in your projects,

which is connected to P0.29 and is accessible in code

as D4.

Holding this button down coming out of a board reset

will also force the device to enter and remain in USB

bootloader mode, which can be useful if you lock your

board up with bad application code!

RST - this is the Reset pin, tie to ground to manually

reset the nRF52840, as well as launch the bootloader

manually

SWCLK & SWDIO - These are the debug-interface pins,

used if you want to reprogram the chip directly or attach

a debugger.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 14 of 179

https://learn.adafruit.com/assets/87064
https://learn.adafruit.com/assets/87065
https://learn.adafruit.com/assets/87066

Arduino Support
Setup

You can install the Adafruit Bluefruit nRF52 BSP (Board Support Package) in two steps:

1. BSP Installation

Recommended: Installing the BSP via the Board Manager

Download and install the Arduino IDE (https://adafru.it/fvm) (At least v1.8)
Start the Arduino IDE
Go into Preferences
Add https://www.adafruit.com/package_adafruit_index.json as an 'Additional Board Manager URL' (see image

below)

Restart the Arduino IDE
Open the Boards Manager option from the Tools -> Board menu and install 'Adafruit nRF52 by Adafruit' (see
image below)

nRF52 support requires at least Arduino IDE version 1.8.6! Please make sure you have an up to date version
before proceeding with this guide!�

Please consult the FAQ section at the bottom of this page if you run into any problems installing or using this
BSP!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 15 of 179

https://www.arduino.cc/en/Main/Software

It will take up to a few minutes to finish installing the cross-compiling toolchain and tools associated with this BSP.

The delay during the installation stage shown in the image below is normal, please be patient and let the installation
terminate normally:

Once the BSP is installed, select 'Adafruit Bluefruit nRF52832 Feather' (for the nRF52 Feathger) of 'Adafruit
Bluefruit nRF52840 Feather Express' (for the nRF52840 Feather) from the Tools -> Board menu, which will
update your system config to use the right compiler and settings for the nRF52:

2. LINUX ONLY: adafruit-nrfutil Tool Installation

adafruit-nrfutil (https://adafru.it/Cau) is a modified version of Nordic's nrfutil (https://adafru.it/vaG), which is used to flash
boards using the built in serial bootloader. It is originally written for python2, but have been migrated to python3 and
renamed to adafruit-nrfutil since BSP version 0.8.5.

Install python3 if it is not installed in your system already

$ sudo apt-get install python3

Then run the following command to install the tool from PyPi

$ pip3 install --user adafruit-nrfutil

Add pip3 installation dir to your PATH if it is not added already. Make sure adafruit-nrfutil can be executed in terminal
by running

$ adafruit-nrfutil version
adafruit-nrfutil version 0.5.3.post12

3. Update the bootloader (nRF52832 ONLY)

This step is only required on Linux, pre-built binaries of adafruit-nrfutil for Windows and MacOS are already
included in the BSP. That should work out of the box for most setups.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 16 of 179

https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/NordicSemiconductor/pc-nrfutil

To keep up with Nordic's SoftDevice advances, you will likely need to update your bootloader if you are using the
original nRF52832 based Bluefruit nRF52 Feather boards.

Follow this link for instructions on how to do that

https://adafru.it/Dsx

https://adafru.it/Dsx

Advanced Option: Manually Install the BSP via 'git'

If you wish to do any development against the core codebase (generate pull requests, etc.), you can also optionally
install the Adafruit nRF52 BSP manually using 'git', as decribed below:

Adafruit nRF52 BSP via git (for core development and PRs only)

1. Install BSP via Board Manager as above to install compiler & tools.
2. Delete the core folder nrf52 installed by Board Manager in Adruino15, depending on your OS. It could be

macOS: ~/Library/Arduino15/packages/adafruit/hardware/nrf52
Linux: ~/.arduino15/packages/adafruit/hardware/nrf52
Windows: %APPDATA%\Local\Arduino15\packages\adafruit\hardware\nrf52

3. Go to the sketchbook folder on your command line, which should be one of the following:
macOS: ~/Documents/Arduino
Linux: ~/Arduino
Windows: ~/Documents/Arduino

4. Create a folder named hardware/Adafruit , if it does not exist, and change directories into it.

5. Clone the Adafruit_nRF52_Arduino (https://adafru.it/vaF) repo in the folder described in step 2:
git clone git@github.com:adafruit/Adafruit_nRF52_Arduino.git

6. This should result in a final folder name like
~/Documents/Arduino/hardware/Adafruit/Adafruit_nRF52_Arduino (macOS).

7. Restart the Arduino IDE

This step ISN'T required for the newer nRF52840 Feather Express, which has a different bootloader entirely!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 17 of 179

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader
https://github.com/adafruit/Adafruit_nRF52_Arduino

Arduino Examples

Arduino Examples (https://adafru.it/Ilc)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 18 of 179

https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/examples

Arduino Bluefruit nRF52 API

Arduino Bluefruit nRF52 API (https://adafru.it/Ild)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 19 of 179

https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/bluefruit-nrf52-api

nRF52 ADC

The nRF52 family includes an adjustable 'successive-approximation ADC' which can be configured to convert data with
up to 14-bit resolution (0..16383), and the reference voltage can be adjusted up to 3.6V internally.

The default values for the ADC are 10-bit resolution (0..1023) with a 3.6V reference voltage, meaning every digit
returned from the ADC = 3600mV/1024 = 3.515625mV.

Analog Reference Voltage

The internal reference voltage is 0.6V with a variable gain setting, and can be adjust via the analogReference(...)
function, providing one of the following values:

AR_INTERNAL (0.6V Ref * 6 = 0..3.6V) <-- DEFAULT
AR_INTERNAL_3_0 (0.6V Ref * 5 = 0..3.0V)
AR_INTERNAL_2_4 (0.6V Ref * 4 = 0..2.4V)
AR_INTERNAL_1_8 (0.6V Ref * 3 = 0..1.8V)
AR_INTERNAL_1_2 (0.6V Ref * 2 = 0..1.6V)
AR_VDD4 (VDD/4 REF * 4 = 0..VDD)

For example:

// Set the analog reference to 3.0V (default = 3.6V)
analogReference(AR_INTERNAL_3_0);

Analog Resolution

The ADC resolution can be set to 8, 10, 12 or 14 bits using the analogReadResolution(...) function, with the default value
being 10-bit:

// Set the resolution to 12-bit (0..4095)
analogReadResolution(12); // Can be 8, 10, 12 or 14

Default ADC Example (10-bit, 3.6V Reference)

The original source for this code is included in the nRF52 BSP and can be viewed online here (https://adafru.it/zod).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 20 of 179

https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Hardware/adc/adc.ino

int adcin = A5;
int adcvalue = 0;
float mv_per_lsb = 3600.0F/1024.0F; // 10-bit ADC with 3.6V input range

void setup() {
 Serial.begin(115200);
 while (!Serial) delay(10); // for nrf52840 with native usb
}

void loop() {
 // Get a fresh ADC value
 adcvalue = analogRead(adcin);

 // Display the results
 Serial.print(adcvalue);
 Serial.print(" [");
 Serial.print((float)adcvalue * mv_per_lsb);
 Serial.println(" mV]");

 delay(100);
}

Advanced Example (12-bit, 3.0V Reference)

The original source for this code is included in the nRF52 BSP and can be viewed online here (https://adafru.it/zoe).

#include <Arduino.h>

#if defined ARDUINO_NRF52840_CIRCUITPLAY
#define PIN_VBAT A8 // this is just a mock read, we'll use the light sensor, so we can run
the test
#endif

uint32_t vbat_pin = PIN_VBAT; // A7 for feather nRF52832, A6 for nRF52840

#define VBAT_MV_PER_LSB (0.73242188F) // 3.0V ADC range and 12-bit ADC resolution = 3000mV/4096

#ifdef NRF52840_XXAA
#define VBAT_DIVIDER (0.5F) // 150K + 150K voltage divider on VBAT
#define VBAT_DIVIDER_COMP (2.0F) // Compensation factor for the VBAT divider
#else
#define VBAT_DIVIDER (0.71275837F) // 2M + 0.806M voltage divider on VBAT = (2M / (0.806M + 2M))
#define VBAT_DIVIDER_COMP (1.403F) // Compensation factor for the VBAT divider
#endif

#define REAL_VBAT_MV_PER_LSB (VBAT_DIVIDER_COMP * VBAT_MV_PER_LSB)

float readVBAT(void) {
 float raw;

 // Set the analog reference to 3.0V (default = 3.6V)
 analogReference(AR_INTERNAL_3_0);

 // Set the resolution to 12-bit (0..4095)
 analogReadResolution(12); // Can be 8, 10, 12 or 14

 // Let the ADC settle

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 21 of 179

https://github.com/adafruit/Adafruit_nRF52_Arduino/blob/master/libraries/Bluefruit52Lib/examples/Hardware/adc_vbat/adc_vbat.ino

 // Let the ADC settle
 delay(1);

 // Get the raw 12-bit, 0..3000mV ADC value
 raw = analogRead(vbat_pin);

 // Set the ADC back to the default settings
 analogReference(AR_DEFAULT);
 analogReadResolution(10);

 // Convert the raw value to compensated mv, taking the resistor-
 // divider into account (providing the actual LIPO voltage)
 // ADC range is 0..3000mV and resolution is 12-bit (0..4095)
 return raw * REAL_VBAT_MV_PER_LSB;
}

uint8_t mvToPercent(float mvolts) {
 if(mvolts<3300)
 return 0;

 if(mvolts <3600) {
 mvolts -= 3300;
 return mvolts/30;
 }

 mvolts -= 3600;
 return 10 + (mvolts * 0.15F); // thats mvolts /6.66666666
}

void setup() {
 Serial.begin(115200);
 while (!Serial) delay(10); // for nrf52840 with native usb

 // Get a single ADC sample and throw it away
 readVBAT();
}

void loop() {
 // Get a raw ADC reading
 float vbat_mv = readVBAT();

 // Convert from raw mv to percentage (based on LIPO chemistry)
 uint8_t vbat_per = mvToPercent(vbat_mv);

 // Display the results

 Serial.print("LIPO = ");
 Serial.print(vbat_mv);
 Serial.print(" mV (");
 Serial.print(vbat_per);
 Serial.println("%)");

 delay(1000);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 22 of 179

�

FAQs

NOTE: For FAQs relating to the BSP, see the dedicated BSP FAQ list (https://adafru.it/vnF).

What are the differences between the nRF51 and nRF52 Bluefruit boards? Which one should I be
using?

The two board families take very different design approaches.

All of the nRF51 based modules are based on an AT command set (over UART or SPI), and require two MCUs to run:
the nRF51 hosting the AT command parser, and an external MCU sending AT style commands.

The nRF52 boards run code directly on the nRF52, executing natively and calling the Nordic S132 SoftDevice (their
proprietary Bluetooth Low Energy stack) directly. This allows for more efficient code since there is no intermediate
AT layer or transport, and also allows for lower overall power consumption since only a single device is involved.

The nRF52 will generally give you better performance, but for situation where you need to use an MCU with a
feature the nRF52 doesn't have (such as USB), the nRF51 based boards will still be the preferable solution.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 23 of 179

file:///bluefruit-nrf52-feather-learning-guide/arduino-bsp-setup#bsp-setup-faqs

� Can I run nRF51 Bluefruit sketches on the nRF52?

No. The two board families are fundamentally different, and have entirely separate APIs and programming models. If
you are migrating from the nRF51 to the nRF52, you will need to redesign your sketches to use the newer API,
enabling you to build code that runs natively on the nRF52832 MCU.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 24 of 179

� Can I use the nRF52 as a Central to connect to other BLE peripherals?

The S132 Soft Device and the nRF52832 HW support Central mode, so yes this is possible. At this early
development stage, though, there is only bare bones support for Central mode in the Adafruit nRF52 codebase,
simply to test the HW and S132 and make sure that everything is configured properly. An example is provided of
listening for incoming advertising packets, printing the packet contents and meta-data out to the Serial Monitor. We
hope to add further Central mode examples in the future, but priority has been given to the Peripheral API and
examples for the initial release.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 25 of 179

� How are Arduino sketches executed on the nRF52? Can I do hard real time processing (bit-banging
NeoPixels, Software Serial etc.)?

In order to run Arduino code on the nRF52 at the same time as the low level Bluetooth Low Energy stack, the
Bluefruit nRF52 Feather uses FreeRTOS as a task scheduler. The scheduler will automatically switch between tasks,
assigning clock cycles to the highest priority task at a given moment. This process is generally transparent to you,
although it can have implications if you have hard real time requirements. There is no guarantee on the nRF52 to
meet hard timing requirements when the radio is enabled an being actively used for Bluetooth Low Energy. This
isn't possible on the nRF52 even without FreeRTOS, though, since the SoftDevice (Nordic's propietary binary blob
stack) has higher priority than any user code, including control over interrupt handlers.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 26 of 179

� Can I use GDB to debug my nRF52?

You can, yes, but it will require a Segger J-Link (that's what we've tested against anyway, other options exist), and it's
an advanced operation. But if you're asking about it, you probably know that.

Assuming you have the Segger J-Link drivers installed, you can start Segger's GDB Server from the command line
as follows (OSX/Linux used here):

$ JLinkGDBServer -device nrf52832_xxaa -if swd -speed auto

Then open a new terminal window, making sure that you have access to gcc-arm-none-eabi-gdb from the

command line, and enter the following command:

$./arm-none-eabi-gdb something.ino.elf

` something.ino.elf ` is the name of the .elf file generated when you built your sketch. You can find this by enabling

'Show verbose output during: [x] compilation' in the Arduino IDE preferences. You CAN run GDB without the .elf file,
but pointing to the .elf file will give you all of the meta data like displaying the actual source code at a specific
address, etc.

Once you have the (gdb) prompt, enter the following command to connect to the Segger GDB server (updating

your IP address accordingly, since the HW isn't necessarily local!):

(gdb) target remote 127.0.0.1:2331

If everything went well, you should see the current line of code where the device is halted (normally execution on
the nRF52 will halt as soon as you start the Segger GDB Server).

At this point, you can send GDB debug commands, which is a tutorial in itself! As a crash course, though:

To continue execution, type ' monitor go ' then ' continue '

To stop execution (to read register values, for example.), type ' monitor halt '

To display the current stack trace (when halted) enter ' bt '

To get information on the current stack frame (normally the currently executing function), try these:
info frame : Display info on the current stack frame

info args : Display info on the arguments passed into the stack frame

info locals : Display local variables in the stack frame

info registers : Dump the core ARM register values, which can be useful for debugging specific fault

conditions

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 27 of 179

� Are there any other cross platform or free debugging options other than GDB?

If you have a Segger J-Link, you can also use Segger's OZone debugger GUI to interact with the device, though
check the license terms since there are usage restrictions depending on the J-Link module you have.

You will need to connect your nRF52 to the J-Link via the SWD and SWCLK pins on the bottom of the PCB, or if you
are OK with fine pitch soldering via the SWD header.

You can either solder on a standard 2x5 SWD header on the pad available in the board, or you can solder wires to
the SWD and SWCLK pads on the bottom of the PCB and use an SWD Cable Breakout Board, or just connect cables
directly to your J-Link via some other means.

You will also need to connect the VTRef pin on the JLink to 3.3V on the Feather to let the J-Link know what voltage
level the target has, and share a common GND by connecting the GND pins on each device.

Before you can start to debug, you will need to get the .elf file that contains all the debug info for your sketch. You
can find this file by enabling Show Verbose Output During: compilation in the Arduino Preferences dialogue box.
When you build your sketch, you need to look at the log output, and find the .elf file, which will resemble something
like this (it will vary depending on the OS
used): /var/folders/86/hb2vp14n5_5_yvdz_z8w9x_c0000gn/T/arduino_build_118496/ancs_oled.ino.elf

In the OZone New Project Wizard, when prompted to select a target device in OZone select nRF52832_xxAA, then
make sure that you have set the Target Interface for the debugger to SWD, and finally point to the .elf file above:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 28 of 179

https://www.adafruit.com/new?q=jlink&
https://www.segger.com/ozone.html
https://www.adafruit.com/product/752
https://www.adafruit.com/product/2743

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 29 of 179

Next select the Attach to running program option in the top-left hand corner, or via the menu system, which will cause
the debugger to connect to the nRF52 over SWD:

At this point, you can click the PAUSE icon to stop program execution, and then analyze variables, or set breakpoints
at appropriate locations in your program execution, and debug as you would with most other embedded IDEs!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 30 of 179

Clicking on the left-hand side of the text editor will set a breakpoint on line 69 in the image below, for example, and
the selecting Debug > Reset > Reset & Run from the menu or icon will cause the board to reset, and you should stop
at the breakpoint you set:

You can experiment with adding some of the other debug windows and options via the View menu item, such as
the Call Stack which will show you all of the functions that were called before arriving at the current breakpoint:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 31 of 179

� Can I make two Bluefruit nRF52's talk to each other?

Yes, by running one board in peripheral mode and one board in central mode, where the central will establish a
connection with the peripheral board and you can communicate using BLE UART or a custom service. See the
following Central BLE UART example to help you get
started: https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples/Central

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 32 of 179

� On Linux I'm getting 'arm-none-eabi-g++: no such file or directory', even though 'arm-none-eabi-g++'
exists in the path specified. What should I do?

This is probably caused by a conflict between 32-bit and 64-bit versions of the compiler, libc and the IDE. The
compiler uses 32-bit binaries, so you also need to have a 32-bit version of libc installed on your system (details). Try
running the following commands from the command line to resolve this:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 33 of 179

http://forum.arduino.cc/index.php?topic=221979.0

�
sudo dpkg --add-architecture i386
sudo apt-get update
sudo apt-get install libc6:i386what should I do when Arduino failed to upload sketch to my Feather ?

If you get this error:

Timed out waiting for acknowledgement from device.

Failed to upgrade target. Error is: No data received on serial port. Not able to proceed.
Traceback (most recent call last):
 File "nordicsemi__main__.py", line 294, in serial
 File "nordicsemi\dfu\dfu.py", line 235, in dfu_send_images
 File "nordicsemi\dfu\dfu.py", line 203, in _dfu_send_image
 File "nordicsemi\dfu\dfu_transport_serial.py", line 155, in send_init_packet
 File "nordicsemi\dfu\dfu_transport_serial.py", line 243, in send_packet
 File "nordicsemi\dfu\dfu_transport_serial.py", line 282, in get_ack_nr
nordicsemi.exceptions.NordicSemiException: No data received on serial port. Not able to proceed.

This is probably caused by the bootloader version mismatched on your feather and installed BSP. Due to the
difference in flash layout (more details) and Softdevice API (which is bundled with bootloader), sketch built with
selected bootloader can only upload to board having the same version. In short, you need to upgrade/burn
bootloader to match on your Feather, follow above Update The Bootloader guide

It only has to be done once to update your Feather

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 34 of 179

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/hathach-memory-map
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader

� Do Feather/Metro nRF52832 and nRF52840 support BLE Mesh ?

They all support BLE Mesh, but we don't provide Arduino library for Mesh. You need to write code based on Nordic
sdk mesh.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 35 of 179

� Unable to upload sketch/update bootloader with macOS

If you get error similar to this:

Arduino: 1.8.8 (Mac OS X), Board: "Adafruit Bluefruit nRF52832 Feather, 0.2.9 (s132 6.1.1), Level 0 (Release)"

[1716] Error loading Python lib '/var/folders/gw/b0cg4zm508qf_rf2m655gd3m0000gn/T/_MEIE6ec69/Python':
dlopen: dlopen(/var/folders/gw/b0cg4zm508qf_rf2m655gd3m0000gn/T/_MEIE6ec69/Python, 10): Symbol not found:
_futimens
 Referenced from: /var/folders/gw/b0cg4zm508qf_rf2m655gd3m0000gn/T/_MEIE6ec69/Python (which was built for
Mac OS X 10.13)
 Expected in: /usr/lib/libSystem.B.dylib
 in /var/folders/gw/b0cg4zm508qf_rf2m655gd3m0000gn/T/_MEIE6ec69/Python
exit status 255
Error compiling for board Adafruit Bluefruit nRF52832 Feather.

It is probably due to the pre-built adafruit-nrfutil cannot run on your Mac. The binary is generated on MacOS 10.13, if
your Mac is older than that. Please update your macOS, or you could follow this repo's readme
here https://github.com/adafruit/Adafruit_nRF52_nrfutil to manual install it (tried with pip3 first, or install from source
if it doesn't work). Then use the installed binary to replace the one in the BSP.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 36 of 179

https://github.com/adafruit/Adafruit_nRF52_nrfutil

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 37 of 179

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on low-cost
microcontroller boards. It makes getting started easier than ever with no upfront desktop downloads needed. Once
you get your board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and universities. It's a high-level
programming language which means it's designed to be easier to read, write and maintain. It supports modules and
packages which means it's easy to reuse your code for other projects. It has a built in interpreter which means there
are no extra steps, like compiling, to get your code to work. And of course, Python is Open Source Software which
means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python knowledge, you can
easily apply that to using CircuitPython. If you have no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a microcontroller
chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a microcontroller board!
CircuitPython is easy to use because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs immediately.
There is no compiling, no downloading and no uploading needed.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 38 of 179

You're new to programming. CircuitPython is designed with education in mind. It's easy to start learning how to
program and you get immediate feedback from the board.
Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like, you can also
keep multiple files around for easy experimentation.
The serial console and REPL. These allow for live feedback from your code and interactive programming.
File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio clips, and
otherwise interacting with files.
Strong hardware support. There are many libraries and drivers for sensors, breakout boards and other external
components.
It's Python! Python is the fastest-growing programming language. It's taught in schools and universities.
CircuitPython is almost-completely compatible with Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We welcome and
encourage feedback from the community, and we incorporate this into how we are developing CircuitPython. That's
the core of the open source concept. This makes CircuitPython better for you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 39 of 179

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify
experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by
requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

� Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

https://adafru.it/Ie7

https://adafru.it/Ie7

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (https://adafru.it/Amd).

Click the link above and download the latest UF2 file.

Download and save it to your desktop (or wherever is

handy).

Plug your Itsy nRF52840 into your computer using a

known-good USB cable.

A lot of people end up using charge-only USB cables

and it is very frustrating! So make sure you have a USB

cable you know is good for data sync.

In the image, the Reset button is indicated by the

magenta arrow, and the BTLE status LED is indicated by

the green arrow.

Double-click the Reset button on your board (magenta

arrow), and you will see the BTLE LED (green arrow) will

pulse quickly then slowly blue. If the DotStar LED turns

red, check the USB cable, try another USB port, etc.

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 40 of 179

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/itsybitsy_nrf52840_express/
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/assets/87069
https://learn.adafruit.com/assets/87086

You will see a new disk drive appear called

ITSY840BOOT.

Drag the adafruit_circuitpython_etc.uf2 file to

ITSY840BOOT.

The LED will flash. Then, the ITSY840BOOT drive will

disappear and a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 41 of 179

https://learn.adafruit.com/assets/87081
https://learn.adafruit.com/assets/87089
https://learn.adafruit.com/assets/87093

Installing Mu
Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and works on
Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get immediate feedback from your
board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads

and installation instructions. The website has a wealth of

other information, including extensive tutorials and and

how-to's.

Using Mu

The first time you start Mu, you will be prompted to

select your 'mode' - you can always change your mind

later. For now please select Adafruit!

The current mode is displayed in the lower right corner

of the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click on that and then

choose "Adafruit" in the dialog box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a favorite editor
already!)�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 42 of 179

https://learn.adafruit.com/assets/74974
https://codewith.mu/
https://learn.adafruit.com/assets/49641

Mu attempts to auto-detect your board, so please plug

in your CircuitPython device and make sure it shows up

as a CIRCUITPY drive before starting Mu

Now you're ready to code! Lets keep going....

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 43 of 179

https://learn.adafruit.com/assets/49642

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section, we're going to
cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend using Mu! It's
designed for CircuitPython, and it's really simple and easy to use, with a built in serial console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad on Windows,
TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back changes immediately to files that
you edit. That can cause problems when using CircuitPython. See the Editing Code (https://adafru.it/id3) section below.
If you want to skip that section for now, make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux
after writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 44 of 179

https://learn.adafruit.com/assets/49645

It will look like this - note that under the while True:
line, the next four lines have spaces to indent them, but

they're indented exactly the same amount. All other

lines have no spaces before the text.

Save this file as code.py on your CIRCUITPY drive.

On each board you'll find a tiny red LED. It should now be blinking. Once per second

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 45 of 179

https://learn.adafruit.com/assets/49646
https://learn.adafruit.com/assets/49649
https://learn.adafruit.com/assets/49650

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically re-start your
code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On Windows
using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds to complete because
the text editor does not save the file completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes writing the file to
your board, you can corrupt the drive. If this happens, you may lose the code you've written, so it's important to backup
your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes

Recommended only with particular settings or with add-ons:

Don't Click Reset or Unplug!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 46 of 179

https://learn.adafruit.com/assets/49651
https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/

�

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not write swapfiles (https://adafru.it/ELO)
(.swp files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or

set the directory option to write swapfiles elsewhere. Otherwise the swapfile writes trigger restarts of your

program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System Settings-
>Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save package (https://adafru.it/E9m) so that it will
always write out all changes to files on CIRCUITPY .

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the editors above!
If you are using notepad, be sure to eject the drive (see below)
IDLE does not force out changes immediately
nano (on Linux) does not force out changes
geany (on Linux) does not force out changes
Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force the operating
system to save your file to disk. On Linux, use the sync command in a terminal to force the write to disk.

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the steps found on
the Troubleshooting page of every board guide to get your board up and running again.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 47 of 179

http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll make a
simple change. Change the first 0.5 to 0.1 . The code should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something changed! Do
you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 48 of 179

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library in your code. In this example, we

imported three libraries: board , digitalio , and time . All three of these libraries are built into CircuitPython, so no

separate files are needed. That's one of the things that makes this an excellent first example. You don't need any thing
extra to make it work! board gives you access to the hardware on your board, digitalio lets you access that hardware
as inputs/outputs and time let's you pass time by 'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as D13 . So, we initialise that pin, and we set it to output. We set led to equal the rest

of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:". while
True: creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never False, the code will

loop forever. All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 49 of 179

�

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) . This line

is telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the led on and off, the led
will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells CircuitPython to

pause for another 0.5 seconds. This occurs between turning the led off and back on so the LED will be off for 0.5
seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the LED on. So it

blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What if I don't have the loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some unexpected behavior in
simple programs like this since the "exit" also resets the state of the hardware. This is a different behavior than
running commands via REPL. So if you are writing a simple program that doesn't seem to work, you may need to add
a loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press <CTRL><C> to exit the loop.

See also the Behavior section in the docs.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 50 of 179

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased the amount

of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what happens! These
were simple changes, but major changes are done using the same process. Make your desired change, save it, and
get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt and main.py.
CircuitPython looks for those files, in that order, and then runs the first one it finds. While we suggest using code.py as
your code file, it is important to know that the other options exist. If your program doesn't seem to be updating as you
work, make sure you haven't created another code file that's being read instead of the one you're working on.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 51 of 179

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

sudo apt purge modemmanager

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are seeing "AT"
and other gibberish when you connect, then the modemmanager service might be interfering. Just remove it;
it doesn't have much use unless you're still using dial-up modems. To remove, type this command at a shell:

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 52 of 179

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

Once in Mu, look for the Serial button in the menu and click it.

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the Serial button, you need to add
yourself to a user group to have permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group. On other Linux distributions, the
group you need may be different. See Advanced Serial Console on Mac and Linux (https://adafru.it/AAI) for details on
how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for more
details (https://adafru.it/AAI)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 53 of 179

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include

your phrase between the quotation marks inside the parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 54 of 179

the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file.

This is normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's
introduce an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 55 of 179

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The

next line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined

with knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 56 of 179

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C

and interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when

troubleshooting, but for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 57 of 179

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us

where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.
Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!
This is a perfect place to start. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 58 of 179

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but

that's not the case! If you recall, the import statement simply tells the code to expect to do something with that

module. In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 59 of 179

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 60 of 179

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 61 of 179

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If not, simply create the folder
yourself. When you first install CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python docs (https://adafru.it/rar) are a
great reference for how it all should work. In Python terms, we can place our library files in the lib directory because its
part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 62 of 179

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the
full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button below.

Note: Match up the bundle version with the version of CircuitPython you are running - 3.x library for running any
version of CircuitPython 3, 4.x for running any version of CircuitPython 4, etc. If you mix libraries with major
CircuitPython versions, you will most likely get errors due to changes in library interfaces possible during major version
changes.

https://adafru.it/ENC

https://adafru.it/ENC

If you need another version, you can also visit the bundle release page (https://adafru.it/Ayy) which will let you select
exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version. If you don't know the version,
look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if you're running v4.0.1,
download the 4.x library bundle. There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One folder is the lib bundle, and the
other folder is the examples bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 63 of 179

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Now open the lib folder. When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle. These are
included for two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized purposes.

Copying Libraries to Your Board

First you'll want to create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create
a new folder, and call it lib. Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a
number of folders and .mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be converted to .mpy
using the mpy-cross utility if you encounter MemoryErrors . This is discussed in the CircuitPython Essentials

Guide (https://adafru.it/CTw). Usage is the same as described above in the Express Boards section. Note: If you do not
place examples in a separate folder, you would remove the examples from the import statement.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 64 of 179

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6

This demonstration will only return an error if you do not have the required library loaded into the lib folder on your
CIRCUITPY drive.

Let's use a modified version of the blinky example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy. This is the library file we're looking for! Follow the steps above to load an individual library
file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 65 of 179

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to

your code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on your
CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your lib folder, it
will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 66 of 179

�

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython microcontrollers.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

Is ESP8266 or ESP32 supported in CircuitPython? Why not?

We are dropping ESP8266 support as of 4.x - For more information please read about it here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 67 of 179

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

� How do I connect to the Internet with CircuitPython?

If you'd like to add WiFi support, check out our guide on ESP32/ESP8266 as a co-processor.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 68 of 179

https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32

� Is there asyncio support in CircuitPython

We do not have asyncio support in CircuitPython at this time

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 69 of 179

� My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read more here for what the colors
mean!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 70 of 179

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-20-18

What is a MemoryError ?

Memory allocation errors happen when you're trying to store too much on the board. The CircuitPython microcontroller
boards have a limited amount of memory available. You can have about 250 lines of code on the M0 Express boards. If
you try to import too many libraries, a combination of large libraries, or run a program with too many lines of code,

your code will fail to run and you will receive a MemoryError in the serial console (REPL).

What do I do when I encounter a MemoryError ?

Try resetting your board. Each time you reset the board, it reallocates the memory. While this is unlikely to resolve your
issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries are available in the bundle in a
.mpy format which takes up less memory than .py format. Be sure that you're using the latest library
bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments, remove extraneous or unneeded
code, or any other clean up you can do to shorten your code. If you're using a lot of functions, you could try moving
those into a separate library, creating a .mpy of that library, and importing it into your code.

You can turn your entire file into a .mpy and import that into code.py . This means you will be unable to edit your

code live on the board, but it can save you space.

Can the order of my import statements affect memory?

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 71 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

It can because the memory gets fragmented differently depending on allocation order and the size of objects. Loading
.mpy files uses less memory so its recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download the CircuitPython 2.x version of mpy-cross for your operating system from the CircuitPython

Releases page (https://adafru.it/tBa) under the latest 2.x version.

You can build mpy-cross for CircuitPython 3.x by cloning the CircuitPython GitHub repo (https://adafru.it/tB7), and

running make in the circuitpython/mpy-cross/ directory. Then run ./mpy-cross path/to/foo.py to create a foo.mpy
in the same directory as the original file.

How do I check how much memory I have free?

import gc
gc.mem_free()

Will give you the number of bytes available for use.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an estimated time for when they will be
included.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/cpy-welcome)
CPC = Circuit Playground Classic (https://adafru.it/ncE)
CPX = Circuit Playground Express (https://adafru.it/wpF)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 72 of 179

https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,
Discord is a digital maker space with makers from around the world.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 73 of 179

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid support folks to
answer any questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be
working, the forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use
the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is the best place to post your
CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 74 of 179

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to
CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/ (https://adafru.it/d6C)and sign
up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find a list that
includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified as something that
someone with any level of experience can help with. These issues include options like updating documentation,
providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 75 of 179

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%253Aissue+is%253Aopen
https://github.com/adafruit/circuitpython/issues?q=is%253Aissue+is%253Aopen+label%253A%2522good+first+issue%2522

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython. This is where
you'll find things like API documentation and details about core modules. There is also a Design Guide that includes
contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core
modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the available
parameters and an explanation for each. In many cases, you'll find quick code examples to help you understand how
the modules and parameters work, however it won't have detailed explanations like the Learn Guides. If you want help
understanding what's going on behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to
help!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 76 of 179

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

Advanced Serial Console on Windows

Windows 7 Driver

If you're using Windows 7, use the link below to download the driver package. You will not need to install drivers on
Mac, Linux or Windows 10.

https://adafru.it/AB0

https://adafru.it/AB0

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your board in to USB on your
computer, it connects to a serial port. The port is like a door through which your board can communicate with your
computer using USB.

We'll use Windows Device Manager to determine which port the board is using. The easiest way to determine which
port the board is using is to first check without the board plugged in. Open Device Manager. Click on Ports (COM &
LPT). You should find something already in that list with (COM#) after it where # is a number.

Now plug in your board. The Device Manager list will refresh and a new item will appear under Ports (COM & LPT).
You'll find a different (COM#) after this item in the list.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 77 of 179

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers*.exe

Sometimes the item will refer to the name of the board. Other times it may be called something like USB Serial Device,
as seen in the image above. Either way, there is a new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. We're going to use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1). You'll want to download the Windows
installer file. It is most likely that you'll need the 64-bit version. Download the file and install the program on your
machine. If you run into issues, you can try downloading the 32-bit version instead. However, the 64-bit version will
work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.
In the box under Serial line, enter the serial port you found that your board is using.
In the box under Speed, enter 115200. This called the baud rate, which is the speed in bits per second that data
is sent over the serial connection. For boards with built in USB it doesn't matter so much but for ESP8266 and
other board with a separate chip, the speed required by the board is 115200 bits per second. So you might as
well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete a stored session. Enter a name
in the box under Saved Sessions, and click the Save button on the right.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 78 of 179

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click "Open" at the bottom of the
window. A new window will open.

If no code is running, the window will either be blank or will look like the window above. Now you're ready to see the
results of your code.

Great job! You've connected to the serial console!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 79 of 179

Advanced Serial Console on Mac and Linux

Connecting to the serial console on Mac and Linux uses essentially the same process. Neither operating system needs
drivers installed. On MacOSX, Terminal comes installed. On Linux, there are a variety such as gnome-terminal (called
Terminal) or Konsole on KDE.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your board in to USB on your
computer, it connects to a serial port. The port is like a door through which your board can communicate with your
computer using USB.

We're going to use Terminal to determine what port the board is using. The easiest way to determine which port the
board is using is to first check without the board plugged in. On Mac, open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with tty. . The command ls shows

you a list of items in a directory. You can use * as a wildcard, to search for files that start with the same letters but end

in something different. In this case, we're asking to see all of the listings in /dev/ that start with tty. and end in

anything. This will show us the current serial connections.

For Linux, the procedure is the same, however, the name is slightly different. If you're using Linux, you'll type:

ls /dev/ttyACM*

The concept is the same with Linux. We are asking to see the listings in the /dev/ folder, starting with ttyACM and

ending with anything. This will show you the current serial connections. In the example below, the error is indicating
that are no current serial connections starting with ttyACM .

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 80 of 179

Now, plug your board. Using Mac, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

Using Mac, a new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem141441 part of this

listing is the name the example board is using. Yours will be called something similar.

Using Linux, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 81 of 179

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of this listing is the name the

example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial console. We're going to use a
command called screen . The screen command is included with MacOS. Linux users may need to install it using their

package manager. To connect to the serial console, use Terminal. Type the following command, replacing
board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells screen the name of the board you're
trying to use. The third part tells screen what baud rate to use for the serial connection. The baud rate is the speed in
bits per second that data is sent over the serial connection. In this case, the speed required by the board is 115200 bits
per second.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 82 of 179

Press enter to run the command. It will open in the same window. If no code is running, the window will be blank.
Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue with permissions. Linux keeps track

of users and groups and what they are allowed to do and not do, like access the hardware associated with the serial
connection for running screen . So if you see something like this:

then you may need to grant yourself access. There are generally two ways you can do this. The first is to just run
screen using the sudo command, which temporarily gives you elevated privileges.

Once you enter your password, you should be in:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 83 of 179

The second way is to add yourself to the group associated with the hardware. To figure out what that group is, use the
command ls -l as shown below. The group name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated privileges to do this, so you'll need

to use sudo . In the example below, the group is adm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some cases, reboot your machine. After
you log in again, verify that you have been added to the group using the command groups . If you are still not in the

group, reboot and check again.

And now you should be able to run screen without using sudo .

And you're in:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 84 of 179

The examples above use screen , but you can also use other programs, such as putty or picocom , if you prefer.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 85 of 179

Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit Playground Express
can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk drive. That
means your main.py or code.py any other files, the lib folder etc. You may lose these files when you remove
CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop computer like you would
with any USB drive.

Moving Circuit Playground Express to MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit Playground Bluefruit), if you want to go
back to using MakeCode, it's really easy. Visit makecode.adafruit.com (https://adafru.it/wpC) and find the program you
want to upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT directory
shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 86 of 179

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to single click the
reset button

Moving to Arduino

If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like with
MakeCode

Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 87 of 179

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully, the serial
Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will automatically
reset when you upload

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 88 of 179

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython

repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader
 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-
compatible bootloader, which does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the reset button
just once to get the CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 89 of 179

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode

and uninstall all the "Adafruit" driver programs.

Windows 7

The latest version of the Adafruit Windows Drivers (version 2.0.0.0 or later) will fix the missing boardnameBOOT drive

problem on Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall
everything named "Windows Driver Package - Adafruit Industries LLC ...".

Now install the new 2.3.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and

when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not work for you!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 90 of 179

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe
https://forums.adafruit.com
https://adafru.it/discord

Windows Explorer Locks Up When Accessing boardnameBOOT Drive

On Windows, several third-party programs we know of can cause issues. The symptom is that you try to access the
boardnameBOOT drive, and Windows or Windows Explorer seems to lock up. These programs are known to cause

trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired hardware to test,
and released a beta version that fixes the problem. This may have been incorporated into the latest release.
Please let us know in the forums if you test thi.s
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects of
Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.

Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives can interfere with copying UF2
files to the boardnameBOOT drive. Uninstall that utility to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. We haven't yet figured out a settings change

that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY . A user has reported this problem on Windows 7. The user turned off

both Smart Firewall and Auto Protect, and CIRCUITPY then appeared.

Serial Console in Mu Not Displaying Anything

There are times when the serial console will accurately not display anything, such as, when no code is currently
running, or when code with no serial output is already running before you open the console. However, if you find
yourself in a situation where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console panel may
be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines followed by
Press any key to enter the REPL. Use CTRL-D to reload.. If this is the case, you need to either mouse over the top of

the panel to utilise the option to resize the serial panel, or use the scrollbar on the right side to scroll up and find your

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 91 of 179

message.

This applies to any kind of serial output whether it be error messages or print statements. So before you start trying to
debug your problem on the hardware side, be sure to check that you haven't simply missed the serial messages due to
serial output panel height.

CircuitPython RGB Status Light

The Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express, ItsyBitsy M4
Express, Gemma M0, and Trinket M0 all have a single NeoPixel or DotStar RGB LED on the board that indicates the
status of CircuitPython.

Circuit Playground Express does NOT have a status LED. The LEDs will pulse green when in the bootloader. They do
NOT indicate any status while running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for a reset to indicate that it should
start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file that was generated by a different

version of CircuitPython than the one its being loaded into. In particular, the mpy binary format changed between

CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of the library

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 92 of 179

that triggered the error on import . They are all available in the Adafruit bundle (https://adafru.it/y8E).

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version 2.2.4, and
the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops

showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to provide the USB
services. Reset the board so you get a boardnameBOOT drive rather than a CIRCUITPY drive, copy the latest version

of CircuitPython (.uf2) back to the board, then Reset. This may restore CIRCUITPY functionality.

If still broken - When the CIRCUITPY disk is not safely ejected before being reset by the button or being disconnected

from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

Easiest Way: Use storage.erase_filesystem()
Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If you have an
older version of CircuitPython on your board, you can update to the newest version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal program.
2. Type:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/AdJ

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 93 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098

https://adafru.it/EVK

https://adafru.it/EVK

https://adafru.it/AdK

https://adafru.it/AdK

https://adafru.it/EoM

https://adafru.it/EoM

https://adafru.it/DjD

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/GAO

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The onboard NeoPixel will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the mainboard NeoPixel will light up green. On the NeoTrellis M4 this is the
first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2 file to

the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd). You'll also need to install your libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 94 of 179

https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the erase file:

https://adafru.it/AdL

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto,
Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

Just follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed), which will erase and re-create

CIRCUITPY .

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that

you aren't using anymore or test code that isn't in use. Don't delete the lib folder completely, though, just remove

what you don't need.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

Mac OSX loves to add extra files.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 95 of 179

https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available
on OSX:

Prevent & Remove Mac OSX Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is

the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop hidden files
from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this

point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file that
was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily you can
run a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on Mac OSX Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some
cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the

board use a command like:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 96 of 179

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

 cp -X foo.mpy /Volumes/CIRCUITPY

(Replace foo.mpy with the name of the file you want to copy.) Or to copy a folder and all of its child files/folders use a

command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before copying.

if lib does not exist, you'll create a file named lib !
cp -X foo.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X foo.mpy /Volumes/CIRCUITPY/lib/

Other Mac OSX Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

Lets remove the ._ files first.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 97 of 179

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 98 of 179

Getting Started with BLE and CircuitPython

Guides

Getting Started with CircuitPython and Bluetooth Low Energy (https://adafru.it/FxH) - Get started with
CircuitPython, the Adafruit nRF52840 and the Bluefruit LE Connect app.
BLE Light Switch with Feather nRF52840 and Crickit (https://adafru.it/Ile) - Control a robot finger from across the
room to flip on and off the lights!
Color Remote with Circuit Playground Bluefruit (https://adafru.it/Ije) - Mix NeoPixels wirelessly with a Bluetooth LE
remote control!
MagicLight Bulb Color Mixer with Circuit Playground Bluefruit (https://adafru.it/Ilf) - Mix colors on a MagicLight
Bulb wirelessly with a Bluetooth LE remote control.
Bluetooth Turtle Bot with CircuitPython and Crickit (https://adafru.it/Hcx) - Build your own Bluetooth controlled
turtle rover!
Wooden NeoPixel Xmas Tree (https://adafru.it/IlA) - Cut a Christmas tree of wood and mount some NeoPixels in
the tree to create a festive yuletide light display.
Bluefruit TFT Gizmo ANCS Notifier for iOS (https://adafru.it/IlB) - Circuit Playground Bluefruit displays your iOS
notification icons so you know when there's fresh activity!
Bluefruit Playground Hide and Seek (https://adafru.it/HjC) - Use Circuit Playground Bluefruit devices to create a
colorful signal strength-based proximity detector!
Snow Globe with Circuit Playground Bluefruit (https://adafru.it/HgA) - Make your own festive (or creatively odd!)
snow globe with custom lighting effects and Bluetooth control.
Bluetooth Controlled NeoPixel Lightbox (https://adafru.it/IlC) - Great for tracing and writing, this lightbox lets you
adjust color and brightness with your phone.
Circuit Playground Bluefruit NeoPixel Animation and Color Remote Control (https://adafru.it/HE0) - Control
NeoPixel colors and animation remotely over Bluetooth with the Circuit Playground Bluefruit!
Circuit Playground Bluetooth Cauldron (https://adafru.it/IlD) - Build a Bluetooth Controlled Light Up Cauldron.
NeoPixel Badge Lanyard with Bluetooth LE (https://adafru.it/IlE) - Light up your convention badge and control
colors with your phone!
CircuitPython BLE Controlled NeoPixel Hat (https://adafru.it/IlF) - Wireless control NeoPixels on your wearables!
Bluefruit nRF52 Feather Learning Guide (https://adafru.it/Chj) - Get started now with our most powerful Bluefruit
board yet!
CircusPython: Jump through Hoops with CircuitPython Bluetooth LE (https://adafru.it/Ima) - Blinka jumps through
a ring of fire, controlled via Bluetooth LE and the Bluefruit LE Connect app!
A CircuitPython BLE Remote Control On/Off Switch (https://adafru.it/Imb) - Make a remote control on/off switch for
a computer with CircuitPython and BLE.
NeoPixel Infinity Cube (https://adafru.it/Imc) - Build a 3D printed, Bluetooth controlled Mirrored Acrylic and
NeoPixel Infinity cube.
CircuitPython BLE Crickit Rover (https://adafru.it/Imd) - Purple Robot with Feather nRF52840 and Crickit plus
NeoPixel underlighting!
Circuit Playground Bluefruit Pumpkin with Lights and Sounds (https://adafru.it/HcB) - Add the Circuit Playground
Bluefruit and STEMMA speaker to an inexpensive plastic pumpkin.
No-Solder LED Disco Tie with Bluetooth (https://adafru.it/Ime) - Build an LED tie controlled by Bluetooth LE.
Bluetooth Remote Control for the Lego Droid Developer Kit (https://adafru.it/Imf) - Reinvigorating the Lego Star
Wars Droid Developer Kit with an Adafruit powered remote control using Bluetooth LE.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 99 of 179

https://learn.adafruit.com/circuitpython-nrf52840
https://learn.adafruit.com/bluetooth-light-switch-with-crickit-and-nrf52840
https://learn.adafruit.com/color-remote-with-circuit-playground-bluefruit
https://learn.adafruit.com/magiclight-bulb-mixer
https://learn.adafruit.com/bluetooth-turtle-bot-with-circuitpython-and-crickit
https://learn.adafruit.com/wooden-neopixel-xmas-tree
https://learn.adafruit.com/ancs-gizmo
https://learn.adafruit.com/hide-n-seek-bluefruit-ornament
https://learn.adafruit.com/snow-globe-bluefruit-cpb
https://learn.adafruit.com/bluetooth-neopixel-lightbox
https://learn.adafruit.com/circuit-playground-bluefruit-neopixel-animation-and-color-remote-control
https://learn.adafruit.com/cpx-cauldron
https://learn.adafruit.com/bluetooth-neopixel-badge-lanyard
https://learn.adafruit.com/circuitpython-feather-ble-neopixel-hat
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide
https://learn.adafruit.com/circuspython-jump-through-hoops-with-bluetooth-le
https://learn.adafruit.com/circuitpython-ble-remote-control-on-off
https://learn.adafruit.com/neopixel-infinity-cube
https://learn.adafruit.com/circuitpython-ble-crickit-rover
https://learn.adafruit.com/pumpkin-with-circuit-playground-bluefruit
https://learn.adafruit.com/no-solder-circuit-playground-bluetooth-disco-tie
https://learn.adafruit.com/bluetooth-remote-for-lego-droid

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide (https://adafru.it/cpy-welcome). You've already gotten
everything setup, and you've gotten CircuitPython running. Great! Now what? CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used libraries available. This guide will
introduce you to these and show you an example of how to use each one.

Each section will present you with a piece of code designed to work with different boards, and explain how to use the
code with each board. These examples work with any board designed for CircuitPython, including Circuit Playground
Express, Trinket M0, Gemma M0, ItsyBitsy M0 Express, ItsyBitsy M4 Express, Feather M0 Express, Feather M4
Express, Metro M4 Express, Metro M0 Express, Trellis M4 Express, and Grand Central M4 Express.

Some examples require external components, such as switches or sensors. You'll find wiring diagrams where
applicable to show you how to wire up the necessary components to work with each example.

Let's get started learning the CircuitPython Essentials!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 100 of 179

file:///welcome-to-circuitpython

CircuitPython Built-
Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)
['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs',
'floor', 'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and float whenever you expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our many examples like this MCP9808
library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2
>>> g(8)
64

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and max .

This is not an exhaustive list! It's simply some of the many features you can use.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 101 of 179

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

CircuitPython Digital In &
Out

The first part of interfacing with hardware is being able to manage digital inputs and outputs. With CircuitPython, it's
super easy!

This example shows how to use both a digital input and output. You can use a switch input with pullup resistor (built in)
to control a digital output - the built in red LED.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

CircuitPython IO demo #1 - General Purpose I/O
import time
import board
from digitalio import DigitalInOut, Direction, Pull

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

For Gemma M0, Trinket M0, Metro M0 Express, ItsyBitsy M0 Express, Itsy M4 Express
switch = DigitalInOut(board.D2)
switch = DigitalInOut(board.D5) # For Feather M0 Express, Feather M4 Express
switch = DigitalInOut(board.D7) # For Circuit Playground Express
switch.direction = Direction.INPUT
switch.pull = Pull.UP

while True:
 # We could also do "led.value = not switch.value"!
 if switch.value:
 led.value = False
 else:
 led.value = True

 time.sleep(0.01) # debounce delay

Note that we made the code a little less "Pythonic" than necessary. The if/else block could be replaced with a simple

led.value = not switch.value but we wanted to make it super clear how to test the inputs. The interpreter will read the

digital input when it evaluates switch.value .

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express, ItsyBitsy M4 Express, no
changes to the initial example are needed.

For Feather M0 Express and Feather M4 Express, comment out switch = DigitalInOut(board.D2) (and/or switch =
DigitalInOut(board.D7) depending on what changes you already made), and uncomment switch =
DigitalInOut(board.D5) .

For Circuit Playground Express, you'll need to comment out switch = DigitalInOut(board.D2) (and/or switch =
DigitalInOut(board.D5) depending on what changes you already made), and uncomment switch =

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # + space
from the beginning of the line.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 102 of 179

DigitalInOut(board.D7) .

To find the pin or pad suggested in the code, see the list below. For the boards that require wiring, wire up a switch
(also known as a tactile switch, button or push-button), following the diagram for guidance. Press or slide the switch,
and the onboard red LED will turn on and off.

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have internal pulldowns with Pull.DOWN
and if you want to turn off the pullup/pulldown just assign switch.pull = None.

Find the pins!

The list below shows each board, explains the location of the Digital pin suggested for use as input, and the location of
the D13 LED.

Circuit Playground Express

We're going to use the switch, which is pin D7, and is

located between the battery connector and the reset

switch on the board. D13 is labeled D13 and is located

next to the USB micro port.

To use D7, comment out the current pin setup line, and

uncomment the line labeled for Circuit Playground

Express. See the details above!

Trinket M0

D2 is connected to the blue wire, labeled "2", and

located between "3V" and "1" on the board. D13 is

labeled "13" and is located next to the USB micro port.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 103 of 179

https://learn.adafruit.com/assets/51501
https://learn.adafruit.com/assets/51505

Gemma M0

D2 is an alligator-clip-friendly pad labeled both "D2" and

"A1", shown connected to the blue wire, and is next to

the USB micro port. D13 is located next to the "GND"

label on the board, above the "On/Off" switch.

Use alligator clips to connect your switch to your

Gemma M0!

Feather M0 Express and Feather M4 Express

D5 is labeled "5" and connected to the blue wire on the

board. D13 is labeled "#13" and is located next to the

USB micro port.

To use D5, comment out the current pin setup line, and

uncomment the line labeled for Feather M0 Express.

See the details above!

ItsyBitsy M0 Express and ItsyBitsy M4 Express

D2 is labeled "2", located between the "MISO" and "EN"

labels, and is connected to the blue wire on the board.

D13 is located next to the reset button between the "3"

and "4" labels on the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 104 of 179

https://learn.adafruit.com/assets/51506
https://learn.adafruit.com/assets/51502
https://learn.adafruit.com/assets/51503

Metro M0 Express and Metro M4 Express

D2 is located near the top left corner, and is connected

to the blue wire. D13 is labeled "L" and is located next to

the USB micro port.

Read the Docs

For a more in-depth look at what digitalio can do, check out the DigitalInOut page in Read the

Docs (https://adafru.it/C4c).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 105 of 179

https://learn.adafruit.com/assets/51504
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html

CircuitPython Analog In

This example shows you how you can read the analog voltage on the A1 pin on your board.

Copy and paste the code into code.py using your favorite editor, and save the file to run the demo.

CircuitPython AnalogIn Demo
import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print((get_voltage(analog_in),))
 time.sleep(0.1)

Creating the analog input

analog1in = AnalogIn(board.A1)

Creates an object and connects the object to A1 as an analog input.

get_voltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to 65535

(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple. It prints out the voltage as floating point values by calling get_voltage on our analog object.

Connect to the serial console to see the results.

Make sure you're running the latest CircuitPython! f you are not, you may run into an error: "AttributeError:
'module' object has no attribute 'A1'". If you receive this error, first make sure you're running the latest version
of CircuitPython!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 106 of 179

Changing It Up

By default the pins are floating so the voltages will vary. While connected to the serial console, try touching a wire from
A1 to the GND pin or 3Vo pin to see the voltage change.

You can also add a potentiometer to control the voltage changes. From the potentiometer to the board, connect the
left pin to ground, the middle pin to A1, and the right pin to 3V. If you're using Mu editor, you can see the changes as
you rotate the potentiometer on the plotter like in the image above! (Click the Plotter icon at the top of the window to
open the plotter.)

Wire it up

The list below shows wiring diagrams to help find the correct pins and wire up the potentiometer, and provides more
information about analog pins on your board!

When you turn the knob of the potentiometer, the wiper rotates left and right, increasing or decreasing the
resistance. This, in turn, changes the analog voltage level that will be read by your board on A1.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 107 of 179

Circuit Playground Express

A1 is located on the right side of the board. There are

multiple ground and 3V pads (pins).

Your board has 7 analog pins that can be used for this

purpose. For the full list, see the pinout

page (https://adafru.it/AM9) on the main guide.

Trinket M0

A1 is labeled as 2! It's located between "1~" and "3V" on

the same side of the board as the little red LED. Ground

is located on the opposite side of the board. 3V is

located next to 2, on the same end of the board as the

reset button.

You have 5 analog pins you can use. For the full list, see

the pinouts page (https://adafru.it/AMd) on the main

guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 108 of 179

https://learn.adafruit.com/assets/51607
file:///adafruit-circuit-playground-express/pinouts
https://learn.adafruit.com/assets/51618
file:///adafruit-trinket-m0-circuitpython-arduino/pinouts

Gemma M0

A1 is located near the top of the board of the board to

the left side of the USB Micro port. Ground is on the

other side of the USB port from A1. 3V is located to the

left side of the battery connector on the bottom of the

board.

Your board has 3 analog pins. For the full list, see the

pinout page (https://adafru.it/AMa) on the main guide.

Feather M0 Express and Feather M4 Express

A1 is located along the edge opposite the battery

connector. There are multiple ground pins. 3V is located

along the same edge as A1, and is next to the reset

button.

Your board has 6 analog pins you can use. For the full

list, see the pinouts page (https://adafru.it/AMc) on the

main guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 109 of 179

https://learn.adafruit.com/assets/51611
file:///adafruit-gemma-m0/pinouts
https://learn.adafruit.com/assets/51616
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/adafruit2-pinouts

ItsyBitsy M0 Express and ItsyBitsy M4 Express

A1 is located in the middle of the board, near the "A" in

"Adafruit". Ground is labled "G" and is located next to

"BAT", near the USB Micro port. 3V is found on the

opposite side of the USB port from Ground, next to RST.

You have 6 analog pins you can use. For a full list, see

the pinouts page (https://adafru.it/BMg) on the main

guide.

Metro M0 Express and Metro M4 Express

A1 is located on the same side of the board as the barrel

jack. There are multiple ground pins available. 3V is

labeled "3.3" and is located in the center of the board

on the same side as the barrel jack (and as A1).

Your Metro M0 Express board has 6 analog pins you

can use. For the full list, see the pinouts

page (https://adafru.it/AMb) on the main guide.

Your Metro M4 Express board has 6 analog pins you

can use. For the full list, see the pinouts

page (https://adafru.it/B1O) on the main guide.

Reading Analog Pin Values

The get_voltage() helper used in the potentiometer example above reads the raw analog pin value and converts it to

a voltage level. You can, however, directly read an analog pin value in your code by using pin.value . For example, to

simply read the raw analog pin value from the potentiometer, you would run the following code:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 110 of 179

https://learn.adafruit.com/assets/51619
https://learn.adafruit.com/introducing-itsy-bitsy-m0/pinouts
https://learn.adafruit.com/assets/52733
file:///adafruit-metro-m0-express-designed-for-circuitpython/pinouts
file:///adafruit-metro-m4-express-featuring-atsamd51/pinouts

import time
import board
from analogio import AnalogIn

analog_in = AnalogIn(board.A1)

while True:
 print(analog_in.value)
 time.sleep(0.1)

This works with any analog pin or input. Use the <pin_name>.value to read the raw value and utilise it in your code.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 111 of 179

CircuitPython Analog Out

This example shows you how you can set the DAC (true analog output) on pin A0.

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython IO demo - analog output
import board
from analogio import AnalogOut

analog_out = AnalogOut(board.A0)

while True:
 # Count up from 0 to 65535, with 64 increment
 # which ends up corresponding to the DAC's 10-bit range
 for i in range(0, 65535, 64):
 analog_out.value = i

Creating an analog output

analog_out = AnalogOut(A0)

Creates an object analog_out and connects the object to A0, the only DAC pin available on both the M0 and the M4

boards. (The M4 has two, A0 and A1.)

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a resolution of 0.0032 Volts per bit.
To allow CircuitPython to be general-purpose enough that it can be used with chips with anything from 8 to 16-bit
DACs, the DAC takes a 16-bit value and divides it down internally.

For example, writing 0 will be the same as setting it to 0 - 0 Volts out.

Writing 5000 is the same as setting it to 5000 / 64 = 78, and 78 / 1024 * 3.3V = 0.25V output.

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it goes through the entire range of the DAC, from 0 to 65535, but increments 64 at a
time so it ends up clicking up one bit for each of the 10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC isn't good for audio outputs as-
is.

Express boards like the Circuit Playground Express, Metro M0 Express, ItsyBitsy M0 Express, ItsyBitsy M4 Express,
Metro M4 Express, Feather M4 Express, or Feather M0 Express have more code space and can perform audio
playback capabilities via the DAC. Gemma M0 and Trinket M0 cannot!

Check out the Audio Out section of this guide (https://adafru.it/BRj) for examples!

A0 is the only true analog output on the M0 boards. No other pins do true analog output!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 112 of 179

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

Find the pin

Use the diagrams below to find the A0 pin marked with a magenta arrow!

Circuit Playground Express

A0 is located between VOUT and A1 near the battery

port.

Trinket M0

A0 is labeled "1~" on Trinket! A0 is located between "0"

and "2" towards the middle of the board on the same

side as the red LED.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 113 of 179

https://learn.adafruit.com/assets/51696
https://learn.adafruit.com/assets/51697

Gemma M0

A0 is located in the middle of the right side of the board

next to the On/Off switch.

Feather M0 Express

A0 is located between GND and A1 on the opposite side

of the board from the battery connector, towards the

end with the Reset button.

Feather M4 Express

A0 is located between GND and A1 on the opposite side

of the board from the battery connector, towards the

end with the Reset button, and the pin pad has left and

right white parenthesis markings around it

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 114 of 179

https://learn.adafruit.com/assets/51698
https://learn.adafruit.com/assets/51699
https://learn.adafruit.com/assets/57531

ItsyBitsy M0 Express

A0 is located between VHI and A1, near the "A" in

"Adafruit", and the pin pad has left and right white

parenthesis markings around it.

ItsyBitsy M4 Express

A0 is located between VHI and A1, and the pin pad has

left and right white parenthesis markings around it.

Metro M0 Express

A0 is between VIN and A1, and is located along the

same side of the board as the barrel jack adapter

towards the middle of the headers found on that side of

the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 115 of 179

https://learn.adafruit.com/assets/51700
https://learn.adafruit.com/assets/57532
https://learn.adafruit.com/assets/51701

Metro M4 Express

A0 is between VIN and A1, and is located along the

same side of the board as the barrel jack adapter

towards the middle of the headers found on that side of

the board.

On the Metro M4 Express, there are TWO true analog

outputs: A0 and A1.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 116 of 179

https://learn.adafruit.com/assets/53100

CircuitPython PWM

Your board has pulseio support, which means you can PWM LEDs, control servos, beep piezos, and manage "pulse

train" type devices like DHT22 and Infrared.

Nearly every pin has PWM support! For example, all ATSAMD21 board have an A0 pin which is 'true' analog out and
does not have PWM support.

PWM with Fixed Frequency

This example will show you how to use PWM to fade the little red LED on your board.

Copy and paste the code into code.py using your favorite editor, and save the file.

import time
import board
import pulseio

led = pulseio.PWMOut(board.D13, frequency=5000, duty_cycle=0)

while True:
 for i in range(100):
 # PWM LED up and down
 if i < 50:
 led.duty_cycle = int(i * 2 * 65535 / 100) # Up
 else:
 led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
 time.sleep(0.01)

Create a PWM Output

led = pulseio.PWMOut(board.D13, frequency=5000, duty_cycle=0)

Since we're using the onboard LED, we'll call the object led , use pulseio.PWMOut to create the output and pass in

the D13 LED pin to use.

Main Loop

The main loop uses range() to cycle through the loop. When the range is below 50, it PWMs the LED brightness up,

and when the range is above 50, it PWMs the brightness down. This is how it fades the LED brighter and dimmer!

The time.sleep() is needed to allow the PWM process to occur over a period of time. Otherwise it happens too quickly

for you to see!

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you want to make some beeps with a
piezo, you'll need to vary the frequency.

The following example uses pulseio to make a series of tones on a piezo.

To use with any of the M0 boards, no changes to the following code are needed.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 117 of 179

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the
piezo = pulseio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True) line and uncomment

the piezo = pulseio.PWMOut(board.A1, duty_cycle=0, frequency=440, variable_frequency=True) line. A2 is not a

supported PWM pin on the M4 boards!

import time
import board
import pulseio

For the M0 boards:
piezo = pulseio.PWMOut(board.A2, duty_cycle=0, frequency=440, variable_frequency=True)

For the M4 boards:
piezo = pulseio.PWMOut(board.A1, duty_cycle=0, frequency=440, variable_frequency=True)

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 piezo.frequency = f
 piezo.duty_cycle = 65536 // 2 # On 50%
 time.sleep(0.25) # On for 1/4 second
 piezo.duty_cycle = 0 # Off
 time.sleep(0.05) # Pause between notes
 time.sleep(0.5)

If you have simpleio library loaded into your /lib folder on your board, we have a nice little helper that makes a tone

for you on a piezo with a single command.

To use with any of the M0 boards, no changes to the following code are needed.

To use with the Metro M4 Express, ItsyBitsy M4 Express or the Feather M4 Express, you must comment out the
simpleio.tone(board.A2, f, 0.25) line and uncomment the simpleio.tone(board.A1, f, 0.25) line. A2 is not a

supported PWM pin on the M4 boards!

import time
import board
import simpleio

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 # For the M0 boards:
 simpleio.tone(board.A2, f, 0.25) # on for 1/4 second
 # For the M4 boards:
 # simpleio.tone(board.A1, f, 0.25) # on for 1/4 second
 time.sleep(0.05) # pause between notes
 time.sleep(0.5)

As you can see, it's much simpler!

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 118 of 179

Wire it up

Use the diagrams below to help you wire up your piezo. Attach one leg of the piezo to pin A2 on the M0 boards or A1
on the M4 boards, and the other leg to ground. It doesn't matter which leg is connected to which pin. They're
interchangeable!

Circuit Playground Express

Use alligator clips to attach A2 and any one of the GND

to different legs of the piezo.

CPX has PWM on the following pins: A1, A2, A3, A6, RX,

LIGHT, A8, TEMPERATURE, A9, BUTTON_B, D5,

SLIDE_SWITCH, D7, D13, REMOTEIN, IR_RX,

REMOTEOUT, IR_TX, IR_PROXIMITY,

MICROPHONE_CLOCK, MICROPHONE_DATA,

ACCELEROMETER_INTERRUPT,

ACCELEROMETER_SDA, ACCELEROMETER_SCL,

SPEAKER_ENABLE.

There is NO PWM on: A0, SPEAKER, A4, SCL, A5, SDA,

A7, TX, BUTTON_A, D4, NEOPIXEL, D8, SCK, MOSI,

MISO, FLASH_CS.

Trinket M0

Note: A2 on Trinket is also labeled Digital "0"!

Use jumper wires to connect GND and D0 to different

legs of the piezo.

Trinket has PWM available on the following pins: D0, A2,

SDA, D2, A1, SCL, MISO, D4, A4, TX, MOSI, D3, A3, RX,

SCK, D13, APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, D1.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 119 of 179

https://learn.adafruit.com/assets/51861
https://learn.adafruit.com/assets/51864

Gemma M0

Use alligator clips to attach A2 and GND to different legs

on the piezo.

Gemma has PWM available on the following pins: A1,

D2, RX, SCL, A2, D0, TX, SDA, L, D13, APA102_MOSI,

APA102_SCK.

There is NO PWM on: A0, D1.

Feather M0 Express

Use jumper wires to attach A2 and one of the two GND

to different legs of the piezo.

Feather M0 Express has PWM on the following pins: A2,

A3, A4, SCK, MOSI, MISO, D0, RX, D1, TX, SDA, SCL, D5,

D6, D9, D10, D11, D12, D13, NEOPIXEL.

There is NO PWM on: A0, A1, A5.

Feather M4 Express

Use jumper wires to attach A1 and one of the two GND

to different legs of the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

Feather M4 Express has PWM on the following pins: A1,

A3, SCK, D0, RX, D1, TX, SDA, SCL, D4, D5, D6, D9, D10,

D11, D12, D13.

There is NO PWM on: A0, A2, A4, A5, MOSI, MISO.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 120 of 179

https://learn.adafruit.com/assets/51866
https://learn.adafruit.com/assets/51868
https://learn.adafruit.com/assets/57590

ItsyBitsy M0 Express

Use jumper wires to attach A2 and G to different legs of

the piezo.

ItsyBitsy M0 Express has PWM on the following pins: D0,

RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11,

D12, D13, L, A2, A3, A4, MOSI, MISO, SCK, SCL, SDA,

APA102_MOSI, APA102_SCK.

There is NO PWM on: A0, A1, A5.

ItsyBitsy M4 Express

Use jumper wires to attach A1 and G to different legs of

the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

ItsyBitsy M4 Express has PWM on the following pins: A1,

D0, RX, D1, TX, D2, D4, D5, D7, D9, D10, D11, D12, D13,

SDA, SCL.

There is NO PWM on: A2, A3, A4, A5, D3, SCK, MOSI,

MISO.

Metro M0 Express

Use jumper wires to connect A2 and any one of the

GND to different legs on the piezo.

Metro M0 Express has PWM on the following pins: A2,

A3, A4, D0, RX, D1, TX, D2, D3, D4, D5, D6, D7, D8, D9,

D10, D11, D12, D13, SDA, SCL, NEOPIXEL, SCK, MOSI,

MISO.

There is NO PWM on: A0, A1, A5, FLASH_CS.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 121 of 179

https://learn.adafruit.com/assets/51870
https://learn.adafruit.com/assets/57591
https://learn.adafruit.com/assets/51871

Metro M4 Express

Use jumper wires to connect A1 and any one of the GND

to different legs on the piezo.

To use A1, comment out the current pin setup line, and

uncomment the line labeled for the M4 boards. See the

details above!

Metro M4 Express has PWM on: A1, A5, D0, RX, D1, TX,

D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, SDA,

SCK, MOSI, MISO

There is No PWM on: A0, A2, A3, A4, SCL, AREF,

NEOPIXEL, LED_RX, LED_TX.

Where's My PWM?

Want to check to see which pins have PWM yourself? We've written this handy script! It attempts to setup PWM on
every pin available, and lets you know which ones work and which ones don't. Check it out!

import board
import pulseio

for pin_name in dir(board):
 pin = getattr(board, pin_name)
 try:
 p = pulseio.PWMOut(pin)
 p.deinit()
 print("PWM on:", pin_name) # Prints the valid, PWM-capable pins!
 except ValueError: # This is the error returned when the pin is invalid.
 print("No PWM on:", pin_name) # Prints the invalid pins.
 except RuntimeError: # Timer conflict error.
 print("Timers in use:", pin_name) # Prints the timer conflict pins.
 except TypeError: # Error returned when checking a non-pin object in dir(board).
 pass # Passes over non-pin objects in dir(board).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 122 of 179

https://learn.adafruit.com/assets/53102

CircuitPython Servo

In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio calls to set

the frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely! adafruit_motor is a library so be

sure to grab it from the library bundle if you have not yet (https://adafru.it/zdx)! If you need help installing the library,
check out the CircuitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each direction from zero degrees).
A continuous servo - the horn moves in full rotation like a DC motor. Instead of an angle specified, you set a
throttle value with 1.0 being full forward, 0.5 being half forward, 0 being stopped, and -1 being full reverse, with
other values between.

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than that, you'll need
an external battery pack. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1 or A2 but you can use any PWM-
capable pin.

For example, to wire a servo to Trinket, connect the

ground wire to GND, the power wire to USB, and the

signal wire to 0.

Remember, A2 on Trinket is labeled "0".

Servos will only work on PWM-capable pins! Check your board details to verify which pins have PWM outputs.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 123 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/assets/51927

For Gemma, use jumper wire alligator clips to connect

the ground wire to GND, the power wire to VOUT, and

the signal wire to A2.

For Circuit Playground Express and Circuit Playground

Bluefruit, use jumper wire alligator clips to connect the

ground wire to GND, the power wire to VOUT, and the

signal wire to A2.

For boards like Feather M0 Express, ItsyBitsy M0

Express and Metro M0 Express, connect the ground

wire to any GND, the power wire to USB or 5V, and the

signal wire to A2.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 124 of 179

https://learn.adafruit.com/assets/51928
https://learn.adafruit.com/assets/51991
https://learn.adafruit.com/assets/51929

For the Metro M4 Express, ItsyBitsy M4 Express and

the Feather M4 Express, connect the ground wire to

any G or GND, the power wire to USB or 5V, and the

signal wire to A1.

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180 degrees (-90 to 90 degrees)
and back:

import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.
my_servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)
 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

1. The servo object is created like my_servo = servo.ContinuousServo(pwm) instead of my_servo =
servo.Servo(pwm)

2. Instead of using myservo.angle , you use my_servo.throttle using a throttle value from 1.0 (full on) to 0.0

(stopped) to -1.0 (full reverse). Any number between would be a partial speed forward (positive) or reverse
(negative). This is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for 2 seconds, then stops for 4
seconds.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 125 of 179

https://learn.adafruit.com/assets/53104

Continuous Servo Test Program for CircuitPython
import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.
my_servo = servo.ContinuousServo(pwm)

while True:
 print("forward")
 my_servo.throttle = 1.0
 time.sleep(2.0)
 print("stop")
 my_servo.throttle = 0.0
 time.sleep(2.0)
 print("reverse")
 my_servo.throttle = -1.0
 time.sleep(2.0)
 print("stop")
 my_servo.throttle = 0.0
 time.sleep(4.0)

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider than
the official 1-2ms pulse widths. If you have a servo that has a different range you can initialize the servo object with a

different min_pulse and max_pulse . For example:

servo = adafruit_motor.servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

For more detailed information on using servos with CircuitPython, check out the CircuitPython section of the servo
guide (https://adafru.it/Bei)!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 126 of 179

file:///using-servos-with-circuitpython/circuitpython

CircuitPython Internal RGB LED

Every board has a built in RGB LED. You can use CircuitPython to control the color and brightness of this LED. There
are two different types of internal RGB LEDs: DotStar (https://adafru.it/kDg) and NeoPixel (https://adafru.it/Bej). This
section covers both and explains which boards have which LED.

The first example will show you how to change the color and brightness of the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file.

import time
import board

For Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express
import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express, and Circuit Playground Express
import neopixel
led = neopixel.NeoPixel(board.NEOPIXEL, 1)

led.brightness = 0.3

while True:
 led[0] = (255, 0, 0)
 time.sleep(0.5)
 led[0] = (0, 255, 0)
 time.sleep(0.5)
 led[0] = (0, 0, 255)
 time.sleep(0.5)

Create the LED

First, we create the LED object and attach it to the correct pin or pins. In the case of a NeoPixel, there is only one pin
necessary, and we have called it NEOPIXEL for easier use. In the case of a DotStar, however, there are two pins

necessary, and so we use the pin names APA102_MOSI and APA102_SCK to get it set up. Since we're using the

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 127 of 179

file:///adafruit-dotstar-leds/overview
file:///adafruit-neopixel-uberguide/the-magic-of-neopixels

single onboard LED, the last thing we do is tell it that there's only 1 LED!

Trinket M0, Gemma M0, ItsyBitsy M0 Express, and ItsyBitsy M4 Express each have an onboard Dotstar LED, so no
changes are needed to the initial version of the example.

Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4 Express, and Circuit Playground Express
each have an onboard NeoPixel LED, so you must comment out import adafruit_dotstar and led =
adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1) , and uncomment import neopixel and led =
neopixel.NeoPixel(board.NEOPIXEL, 1) .

Brightness

To set the brightness you simply use the brightness attribute. Brightness is set with a number between 0 and 1 ,

representative of a percent from 0% to 100%. So, led.brightness = (0.3) sets the LED brightness to 30%. The default

brightness is 1 or 100%, and at it's maximum, the LED is blindingly bright! You can set it lower if you choose.

Main Loop

LED colors are set using a combination of red, green, and blue, in the form of an (R, G, B) tuple. Each member of the
tuple is set to a number between 0 and 255 that determines the amount of each color present. Red, green and blue in
different combinations can create all the colors in the rainbow! So, for example, to set the LED to red, the tuple would
be (255, 0, 0), which has the maximum level of red, and no green or blue. Green would be (0, 255, 0), etc. For the
colors between, you set a combination, such as cyan which is (0, 255, 255), with equal amounts of green and blue.

The main loop is quite simple. It sets the first LED to red using (255, 0, 0) , then green using (0, 255, 0) , and finally

blue using (0, 0, 255) . Next, we give it a time.sleep() so it stays each color for a period of time. We chose

time.sleep(0.5) , or half a second. Without the time.sleep() it'll flash really quickly and the colors will be difficult to

see!

Note that we set led[0] . This means the first, and in the case of most of the boards, the only LED. In CircuitPython,

counting starts at 0. So the first of any object, list, etc will be 0 !

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 128 of 179

Try changing the numbers in the tuples to change your LED to any color of the rainbow. Or, you can add more lines
with different color tuples to add more colors to the sequence. Always add the time.sleep() , but try changing the

amount of time to create different cycle animations!

Making Rainbows (Because Who Doesn't Love 'Em!)

Coding a rainbow effect involves a little math and a helper function called wheel . For details about how wheel works,

see this explanation here (https://adafru.it/Bek)!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 129 of 179

file:///hacking-ikea-lamps-with-circuit-playground-express/generate-your-colors#wheel-explained

The last example shows how to do a rainbow animation on the internal RGB LED.

Copy and paste the code into code.py using your favorite editor, and save the file. Remember to comment and
uncomment the right lines for the board you're using, as explained above (https://adafru.it/Bel).

import time
import board

For Trinket M0, Gemma M0, ItsyBitsy M0 Express and ItsyBitsy M4 Express
import adafruit_dotstar
led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
For Feather M0 Express, Metro M0 Express, Metro M4 Express and Circuit Playground Express
import neopixel
led = neopixel.NeoPixel(board.NEOPIXEL, 1)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return 0, 0, 0
 if pos < 85:
 return int(255 - pos * 3), int(pos * 3), 0
 if pos < 170:
 pos -= 85
 return 0, int(255 - pos * 3), int(pos * 3)
 pos -= 170
 return int(pos * 3), 0, int(255 - (pos * 3))

led.brightness = 0.3

i = 0
while True:
 i = (i + 1) % 256 # run from 0 to 255
 led.fill(wheel(i))
 time.sleep(0.1)

We add the wheel function in after setup but before our main loop.

And right before our main loop, we assign the variable i = 0 , so it's ready for use inside the loop.

The main loop contains some math that cycles i from 0 to 255 and around again repeatedly. We use this value to

cycle wheel() through the rainbow!

The time.sleep() determines the speed at which the rainbow changes. Try a higher number for a slower rainbow or a

lower number for a faster one!

Circuit Playground Express Rainbow

Note that here we use led.fill instead of led[0] . This means it turns on all the LEDs, which in the current code is only

one. So why bother with fill ? Well, you may have a Circuit Playground Express, which as you can see has TEN

NeoPixel LEDs built in. The examples so far have only turned on the first one. If you'd like to do a rainbow on all ten
LEDs, change the 1 in:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 130 of 179

file:///circuitpython-essentials/circuitpython-internal-rgb-led#create-the-led

led = neopixel.NeoPixel(board.NEOPIXEL, 1)

to 10 so it reads:

led = neopixel.NeoPixel(board.NEOPIXEL, 10) .

This tells the code to look for 10 LEDs instead of only 1. Now save the code and watch the rainbow go! You can make
the same 1 to 10 change to the previous examples as well, and use led.fill to light up all the LEDs in the colors you

chose! For more details, check out the NeoPixel section of the CPX guide (https://adafru.it/Bem)!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 131 of 179

file:///adafruit-circuit-playground-express/circuitpython-neopixel

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded RGB lights
have the controller inside the LED, so you just push the RGB data and the LEDs do all the work for you. They're a
perfect match for CircuitPython!

You can drive 300 NeoPixel LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs

without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the neopixel.mpy library if you don't already have it in your /lib folder! You can get it from the CircuitPython
Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython Libraries
page (https://adafru.it/ABU).

Wiring It Up

You'll need to solder up your NeoPixels first. Verify your connection is on the DATA INPUT or DIN side. Plugging into
the DATA OUT or DOUT side is a common mistake! The connections are labeled and some formats have arrows to
indicate the direction the data must flow.

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 132 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

If the power to the NeoPixels is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

CircuitPython demo - NeoPixel
import time
import board
import neopixel

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach 9V and this
can destroy your NeoPixels!�

Note that the wire ordering on your NeoPixel strip or shape may not exactly match the diagram above. Check
the markings to verify which pin is DIN, 5V and GND�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 133 of 179

 pixels[i] = color
 time.sleep(wait)
 pixels.show()
 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
 pixels.fill(RED)
 pixels.show()
 # Increase or decrease to change the speed of the solid color change.
 time.sleep(1)
 pixels.fill(GREEN)
 pixels.show()
 time.sleep(1)
 pixels.fill(BLUE)
 pixels.show()
 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase
 color_chase(YELLOW, 0.1)
 color_chase(GREEN, 0.1)
 color_chase(CYAN, 0.1)
 color_chase(BLUE, 0.1)
 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Create the LED

The first thing we'll do is create the LED object. The NeoPixel object has two required arguments and two optional
arguments. You are required to set the pin you're using to drive your NeoPixels and provide the number of pixels you
intend to use. You can optionally set brightness and auto_write .

NeoPixels can be driven by any pin. We've chosen A1. To set the pin, assign the variable pixel_pin to the pin you'd

like to use, in our case board.A1 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this

example, we're using a strip of 8 .

We've chosen to set brightness=0.3 , or 30%.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 134 of 179

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is

the default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to
set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data

to your pixels. This makes your code more complicated, but it can make your LED animations faster!

NeoPixel Helpers

Next we've included a few helper functions to create the super fun visual effects found in this code. First is wheel()
which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color_chase() which requires you

to provide a color and the amount of time in seconds you'd like between each step of the chase. Next we have

rainbow_cycle() , which requires you to provide the mount of time in seconds you'd like the animation to take. Last,

we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the code,
as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section of the
CircuitPython Internal RGB LED page (https://adafru.it/Bel).

Main Loop

Thanks to our helpers, our main loop is quite simple. We include the code to set every NeoPixel we're using to red,
green and blue for 1 second each. Then we call color_chase() , one time for each color on our list with 0.1 second

delay between setting each subsequent LED the same color during the chase. Last we call rainbow_cycle(0) , which

means the animation is as fast as it can be. Increase both of those numbers to slow down each animation!

Note that the longer your strip of LEDs, the longer it will take for the animations to complete.

NeoPixel RGBW

NeoPixels are available in RGB, meaning there are three LEDs inside, red, green and blue. They're also available in
RGBW, which includes four LEDs, red, green, blue and white. The code for RGBW NeoPixels is a little bit different than
RGB.

If you run RGB code on RGBW NeoPixels, approximately 3/4 of the LEDs will light up and the LEDs will be the incorrect
color even though they may appear to be changing. This is because NeoPixels require a piece of information for each
available color (red, green, blue and possibly white).

Therefore, RGB LEDs require three pieces of information and RGBW LEDs require FOUR pieces of information to work.
So when you create the LED object for RGBW LEDs, you'll include bpp=4 , which sets bits-per-pixel to four (the four

pieces of information!).

Then, you must include an extra number in every color tuple you create. For example, red will be (255, 0, 0, 0) . This is

how you send the fourth piece of information. Check out the example below to see how our NeoPixel code looks for
using with RGBW LEDs!

CircuitPython demo - NeoPixel RGBW

import time
import board
import neopixel

pixel_pin = board.A1

We have a ton more information on general purpose NeoPixel know-how at our NeoPixel UberGuide
https://learn.adafruit.com/adafruit-neopixel-uberguide�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 135 of 179

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-neopixel-uberguide

pixel_pin = board.A1
num_pixels = 8

pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False,
 pixel_order=(1, 0, 2, 3))

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3, 0)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3, 0)

def color_chase(color, wait):
 for i in range(num_pixels):
 pixels[i] = color
 time.sleep(wait)
 pixels.show()
 time.sleep(0.5)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0, 0)
YELLOW = (255, 150, 0, 0)
GREEN = (0, 255, 0, 0)
CYAN = (0, 255, 255, 0)
BLUE = (0, 0, 255, 0)
PURPLE = (180, 0, 255, 0)

while True:
 pixels.fill(RED)
 pixels.show()
 # Increase or decrease to change the speed of the solid color change.
 time.sleep(1)
 pixels.fill(GREEN)
 pixels.show()
 time.sleep(1)
 pixels.fill(BLUE)
 pixels.show()
 time.sleep(1)

 color_chase(RED, 0.1) # Increase the number to slow down the color chase
 color_chase(YELLOW, 0.1)
 color_chase(GREEN, 0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 136 of 179

 color_chase(GREEN, 0.1)
 color_chase(CYAN, 0.1)
 color_chase(BLUE, 0.1)
 color_chase(PURPLE, 0.1)

 rainbow_cycle(0) # Increase the number to slow down the rainbow

Read the Docs

For a more in depth look at what neopixel can do, check out NeoPixel on Read the Docs (https://adafru.it/C5m).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 137 of 179

https://circuitpython.readthedocs.io/projects/neopixel/en/latest/

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much faster with
hardware SPI and they have a faster PWM cycle so they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will automatically switch over to
hardware SPI. If you use hardware SPI then you'll get 4 MHz clock rate (that would mean updating a 64 pixel strand in
about 500uS - that's 0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz, 1000 times as
slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in object creation) and 1000 LEDs

without. That's because to adjust the brightness we have to dynamically recreate the data-stream each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA INPUT or DI and CLOCK INPUT or CI
side. Plugging into the DATA OUT/DO or CLOCK OUT/CO side is a common mistake! The connections are labeled and
some formats have arrows to indicate the direction the data must flow. Always verify your wiring with a visual
inspection, as the order of the connections can differ from strip to strip!

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is about 50
pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend powering direct from an
external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from USB or the
battery, depending on which is higher voltage.
On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express the USB
or BAT pins will give you direct power from the USB port or battery.
On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via USB or the
DC jack.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving some strips, in which case you
may need to lower the voltage to 4.5-5V or use a level shifter.

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach 9V and this
can destroy your DotStars!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 138 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite editor, and
save the file.

CircuitPython demo - Dotstar
import time
import adafruit_dotstar
import board

num_pixels = 30
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

def color_fill(color, wait):
 pixels.fill(color)
 pixels.show()
 time.sleep(wait)

def slice_alternating(wait):
 pixels[::2] = [RED] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [ORANGE] * (num_pixels // 2)
 pixels.show()

Note that the wire ordering on your DotStar strip or shape may not exactly match the diagram above. Check
the markings to verify which pin is DIN, CIN, 5V and GND�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 139 of 179

 pixels.show()
 time.sleep(wait)
 pixels[::2] = [YELLOW] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [GREEN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [TEAL] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [CYAN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [BLUE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [PURPLE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [MAGENTA] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [WHITE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)

def slice_rainbow(wait):
 pixels[::6] = [RED] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[1::6] = [ORANGE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[2::6] = [YELLOW] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[3::6] = [GREEN] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[4::6] = [BLUE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)
 pixels[5::6] = [PURPLE] * (num_pixels // 6)
 pixels.show()
 time.sleep(wait)

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 140 of 179

ORANGE = (255, 40, 0)
GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

while True:
 # Change this number to change how long it stays on each solid color.
 color_fill(RED, 0.5)
 color_fill(YELLOW, 0.5)
 color_fill(ORANGE, 0.5)
 color_fill(GREEN, 0.5)
 color_fill(TEAL, 0.5)
 color_fill(CYAN, 0.5)
 color_fill(BLUE, 0.5)
 color_fill(PURPLE, 0.5)
 color_fill(MAGENTA, 0.5)
 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.
 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.
 rainbow_cycle(0)

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required arguments and two optional
arguments. You are required to set the pin you're using for data, set the pin you'll be using for clock, and provide the
number of pixels you intend to use. You can optionally set brightness and auto_write .

DotStars can be driven by any two pins. We've chosen A1 for clock and A2 for data. To set the pins, include the pin
names at the beginning of the object creation, in this case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use. In this

example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically. Since True is

the default, if you use that setting, you don't need to include it in your LED object at all. We've chosen to

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars respond faster when using
hardware SPI!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 141 of 179

set auto_write=False . If you set auto_write=False , you must include pixels.show() each time you'd like to send data

to your pixels. This makes your code more complicated, but it can make your LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have color_fill() which

requires you to provide a color and the length of time you'd like it to be displayed. Next, are slice_alternating() ,

slice_rainbow() , and rainbow_cycle() which require you to provide the amount of time in seconds you'd between

each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to reuse the colors anywhere in the
code, as well as add more colors for use in multiple places. Assigning and using RGB colors is explained in this section
of the CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use math to light up LEDs in repeating
patterns. slice_alternating() first lights up the even number LEDs and then the odd number LEDs and repeats this

back and forth. slice_rainbow() lights up every sixth LED with one of the six rainbow colors until the strip is filled. Both

use our handy color variables. This slice code only works when the total number of LEDs is divisible by the slice size, in
our case 2 and 6. DotStars come in strips of 30, 60, 72, and 144, all of which are divisible by 2 and 6. In the event that
you cut them into different sized strips, the code in this example may not work without modification. However, as long
as you provide a total number of LEDs that is divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and sets each to hold for 0.5 seconds. You

can change this number to change how fast each color is displayed. Next, we call slice_alternating(0.1) , which means

there's a 0.1 second delay between each change in the animation. Then, we fill the strip white to create a clean
backdrop for the rainbow to display. Then, we call slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we

call rainbow_cycle(0) , which means it's as fast as it can possibly be. Increase or decrease either of these numbers to

speed up or slow down the animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're using hardware SPI. On some of
the boards, there are HW SPI pins directly available in the form of MOSI and SCK. However, hardware SPI is available
on more than just those pins. But, how can you figure out which? Easy! We wrote a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on the board you're using, copy and
paste the code into code.py using your favorite editor, and save the file. Then connect to the serial console to see the
results.

To check if other pin combinations have hardware SPI, change the pin names on the line reading: if
is_hardware_SPI(board.A1, board.A2): to the pins you want to use. Then, check the results in the serial console. Super

simple!

We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide
https://learn.adafruit.com/adafruit-dotstar-leds�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 142 of 179

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop
https://learn.adafruit.com/adafruit-dotstar-leds

import board
import busio

def is_hardware_spi(clock_pin, data_pin):
 try:
 p = busio.SPI(clock_pin, data_pin)
 p.deinit()
 return True
 except ValueError:
 return False

Provide the two pins you intend to use.
if is_hardware_spi(board.A1, board.A2):
 print("This pin combination is hardware SPI!")
else:
 print("This pin combination isn't hardware SPI.")

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the Docs (https://adafru.it/C4d).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 143 of 179

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPSs, some sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating with hardware serial devices.

To use this example, you'll need something to generate the UART data. We've used a GPS! Note that the GPS will give
you UART data without getting a fix on your location. You can use this example right from your desk! You'll have data
to read, it simply won't include your actual location.

You'll need the adafruit_bus_device library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - USB/Serial echo

import board
import busio
import digitalio

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 # print(data) # this is a bytearray type

 if data is not None:
 led.value = True

 # convert bytearray to string
 data_string = ''.join([chr(b) for b in data])
 print(data_string, end="")

 led.value = False

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and board.RX , and we set the

baudrate=9600 . While these pins are labeled on most of the boards, be aware that RX and TX are not labeled on

Gemma, and are labeled on the bottom of Trinket. See the diagrams below for help with finding the correct pins on
your board.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It

will return a byte array type object if anything was received already. Note it will always return immediately because
there is an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 144 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora Ultimate GPS
Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these diagrams, the wire colors match
the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the GPS and your board.
The blue wire connects from TX on the GPS to RX on your board.
The white wire connects from RX on the GPS to TX on your board.

For more information about the data you're reading and the Ultimate GPS, check out the Ultimate GPS guide:
https://learn.adafruit.com/adafruit-ultimate-gps�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 145 of 179

https://learn.adafruit.com/adafruit-ultimate-gps

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your GPS.

Connect GND on your CPX to GND on your GPS.

Connect RX/A6 on your CPX to TX on your GPS.

Connect TX/A7 on your CPX to RX on your GPS.

Trinket M0

Connect USB on the Trinket to VIN on the GPS.

Connect Gnd on the Trinket to GND on the GPS.

Connect D3 on the Trinket to TX on the GPS.

Connect D4 on the Trinket to RX on the GPS.

Watch out! A common mixup with UART serial is that RX on one board connects to TX on the other! However,
sometimes boards have RX labeled TX and vice versa. So, you'll want to start with RX connected to TX, but if
that doesn't work, try the other way around!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 146 of 179

https://learn.adafruit.com/assets/52309
https://learn.adafruit.com/assets/52310

Gemma M0

Connect 3vo on the Gemma to 3.3v on the GPS.

Connect GND on the Gemma to GND on the GPS.

Connect A1/D2 on the Gemma to TX on the GPS.

Connect A2/D0 on the Gemma to RX on the GPS.

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the GPS.

Connect GND on the Feather to GND on the GPS.

Connect RX on the Feather to TX on the GPS.

Connect TX on the Feather to RX on the GPS.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the GPS

Connect G on the ItsyBitsy to GND on the GPS.

Connect RX/0 on the ItsyBitsy to TX on the GPS.

Connect TX/1 on the ItsyBitsy to RX on the GPS.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 147 of 179

https://learn.adafruit.com/assets/52311
https://learn.adafruit.com/assets/52312
https://learn.adafruit.com/assets/52324

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the GPS.

Connect GND on the Metro to GND on the GPS.

Connect RX/D0 on the Metro to TX on the GPS.

Connect TX/D1 on the Metro to RX on the GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART. Compare this to some chips like the
ESP8266 with fixed UART pins. The good news is you can use many but not all pins. Given the large number of SAMD
boards we have, its impossible to guarantee anything other than the labeled 'TX' and 'RX'. So, if you want some other
setup, or multiple UARTs, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of RX and TX pin pairs that you can use.

These are the results from a Trinket M0, your output may vary and it might be very long. For more details about UARTs
and SERCOMs check out our detailed guide here (https://adafru.it/Ben)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 148 of 179

https://learn.adafruit.com/assets/52328
file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is_hardware_uart(tx, rx):
 try:
 p = busio.UART(tx, rx)
 p.deinit()
 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for tx_pin in get_unique_pins():
 for rx_pin in get_unique_pins():
 if rx_pin is tx_pin:
 continue
 else:
 if is_hardware_uart(tx_pin, rx_pin):
 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)
 else:
 pass

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both busio.UART and busio.I2C , you must create the UART object first, e.g.:

>>> import board,busio
>>> uart = busio.UART(board.TX, board.RX)
>>> i2c = busio.I2C(board.SCL, board.SDA)

Creating busio.I2C first does not work:

>>> import board,busio
>>> i2c = busio.I2C(board.SCL, board.SDA)
>>> uart = busio.UART(board.TX, board.RX)
Traceback (most recent call last):
File "", line 1, in
ValueError: Invalid pins

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 149 of 179

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning it uses two connections for
transmitting and receiving data. There are many I2C devices available and they're really easy to use with CircuitPython.
We have libraries available for many I2C devices in the library bundle (https://adafru.it/uap). (If you don't see the sensor
you're looking for, keep checking back, more are being written all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected devices. Then we're going to learn
how to interact with an I2C device.

We'll be using the TSL2561, a common, low-cost light sensor. While the exact code we're running is specific to the
TSL2561 the overall process is the same for just about any I2C sensor or device.

You'll need the adafruit_tsl2561.mpy library and adafruit_bus_device library folder if you don't already have it in your
/lib folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the
library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2561 lux sensor Flora and breakout. The first thing you'll want to do is get the sensor
connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2561 to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora TSL2561 Lux
Sensor.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a breadboard and
jumper wires to connect to the TSL2561 Lux Sensor breakout board.

We've included diagrams show you how to connect the TSL2561 to your board. In these diagrams, the wire colors
match the same pins on each board.

The black wire connects between the ground pins.
The red wire connects between the power pins on the TSL2561 and your board.
The yellow wire connects from SCL on the TSL2561 to SCL on your board.
The blue wire connects from SDA on the TSL2561 to SDA on your board.

Check out the list below for a diagram of your specific board!

Be aware that the Adafruit microcontroller boards do not have I2C pullup resistors built in! All of the Adafruit
breakouts do, but if you're building your own board or using a non-Adafruit breakout, you must add 2.2K-10K
ohm pullups on both SDA and SCL to the 3.3V.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 150 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your

TSL2561.

Connect GND on your CPX to GND on your

TSL2561.

Connect SCL/A4 on your CPX to SCL on your

TSL2561.

Connect SDL/A5 on your CPX to SDA on your

TSL2561.

Trinket M0

Connect USB on the Trinket to VIN on the

TSL2561.

Connect Gnd on the Trinket to GND on the

TSL2561.

Connect D2 on the Trinket to SCL on the TSL2561.

Connect D0 on the Trinket to SDA on the

TSL2561.

Gemma M0

Connect 3vo on the Gemma to 3V on the

TSL2561.

Connect GND on the Gemma to GND on the

TSL2561.

Connect A1/D2 on the Gemma to SCL on the

TSL2561.

Connect A2/D0 on the Gemma to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 151 of 179

https://learn.adafruit.com/assets/52413
https://learn.adafruit.com/assets/52414
https://learn.adafruit.com/assets/52415

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the

TSL2561.

Connect GND on the Feather to GND on the

TSL2561.

Connect SCL on the Feather to SCL on the

TSL2561.

Connect SDA on the Feather to SDA on the

TSL2561.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the

TSL2561

Connect G on the ItsyBitsy to GND on the

TSL2561.

Connect SCL on the ItsyBitsy to SCL on the

TSL2561.

Connect SDA on the ItsyBitsy to SDA on the

TSL2561.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 152 of 179

https://learn.adafruit.com/assets/57598
https://learn.adafruit.com/assets/52417

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the TSL2561.

Connect GND on the Metro to GND on the

TSL2561.

Connect SCL on the Metro to SCL on the TSL2561.

Connect SDA on the Metro to SDA on the

TSL2561.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's wired correctly. We're going to do an
I2C scan to see if the board is detected, and if it is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - I2C scan

import time

import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

while not i2c.try_lock():
 pass

while True:
 print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])
 time.sleep(2)

First we create the i2c object and provide the I2C pins, board.SCL and board.SDA .

To be able to scan it, we need to lock the I2C down so the only thing accessing it is the code. So next we include a
loop that waits until I2C is locked and then continues on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically refers to addresses in hex form,

we've included this bit of code that formats the results into hex format: [hex(device_address) for device_address in

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 153 of 179

https://learn.adafruit.com/assets/52419

i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses. We've connected the TSL2561
which has a 7-bit I2C address of 0x39. The result for this sensor is I2C addresses found: ['0x39'] . If no addresses are

returned, refer back to the wiring diagrams to make sure you've wired up your sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out how to get the data from our
sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython Demo - I2C sensor

import time

import adafruit_tsl2561
import board
import busio

i2c = busio.I2C(board.SCL, board.SDA)

Lock the I2C device before we try to scan
while not i2c.try_lock():
 pass
Print the addresses found once
print("I2C addresses found:", [hex(device_address)
 for device_address in i2c.scan()])

Unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
tsl2561 = adafruit_tsl2561.TSL2561(i2c)

Use the object to print the sensor readings
while True:
 print("Lux:", tsl2561.lux)
 time.sleep(1.0)

This code begins the same way as the scan code. We've included the scan code so you have verification that your
sensor is wired up correctly and is detected. It prints the address once. After the scan, we unlock I2C with
i2c_unlock() so we can use the sensor for data.

We create our sensor object using the sensor library. We call it tsl2561 and provide it the i2c object.

Then we have a simple loop that prints out the lux reading using the sensor object we created. We add a
time.sleep(1.0) , so it only prints once per second. Connect to the serial console to see the results. Try shining a light

on it to see the results change!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 154 of 179

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range of pins for I2C. On the
nRF52840, any pin can be used for I2C! Some chips, like the ESP8266, require using bitbangio, but can also use any
pins for I2C. There's some other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD boards we have, its impossible
to guarantee anything other than the labeled 'SDA' and 'SCL'. So, if you want some other setup, or multiple I2C
interfaces, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and check out the
output! The results print out a nice handy list of SCL and SDA pin pairs that you can use.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might be very long. For more details
about I2C and SERCOMs, check out our detailed guide here (https://adafru.it/Ben).

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 155 of 179

file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

import board
import busio
from microcontroller import Pin

def is_hardware_I2C(scl, sda):
 try:
 p = busio.I2C(scl, sda)
 p.deinit()
 return True
 except ValueError:
 return False
 except RuntimeError:
 return True

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for scl_pin in get_unique_pins():
 for sda_pin in get_unique_pins():
 if scl_pin is sda_pin:
 continue
 else:
 if is_hardware_I2C(scl_pin, sda_pin):
 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)
 else:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 156 of 179

CircuitPython HID Keyboard and
Mouse

One of the things we baked into CircuitPython is 'HID' (Human Interface Device) control - that means keyboard and
mouse capabilities. This means your CircuitPython board can act like a keyboard device and press key commands, or a
mouse and have it move the mouse pointer around and press buttons. This is really handy because even if you cannot
adapt your software to work with hardware, there's almost always a keyboard interface - so if you want to have a
capacitive touch interface for a game, say, then keyboard emulation can often get you going really fast!

This section walks you through the code to create a keyboard or mouse emulator. First we'll go through an example
that uses pins on your board to emulate keyboard input. Then, we will show you how to wire up a joystick to act as a
mouse, and cover the code needed to make that happen.

You'll need the adafruit_hid library folder if you don't already have it in your /lib folder! You can get it from the
CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check out the CircuitPython
Libraries page (https://adafru.it/ABU).

CircuitPython Keyboard Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

CircuitPython demo - Keyboard emulator

import time

import board
import digitalio
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal pullup
keypress_pins = [board.A1, board.A2]
Our array of key objects
key_pin_array = []
The Keycode sent for each button, will be paired with a control key
keys_pressed = [Keycode.A, "Hello World!\n"]
control_key = Keycode.SHIFT

The keyboard object!
time.sleep(1) # Sleep for a bit to avoid a race condition on some systems
keyboard = Keyboard(usb_hid.devices)
keyboard_layout = KeyboardLayoutUS(keyboard) # We're in the US :)

Make all pin objects inputs with pullups
for pin in keypress_pins:
 key_pin = digitalio.DigitalInOut(pin)

These examples have been updated for version 4+ of the CircuitPython HID library. On some boards, such as
the CircuitPlayground Express, this library is built into CircuitPython. So, please use the latest version of
CircuitPython with these examples. (At least 5.0.0-beta.3)

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 157 of 179

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

 key_pin = digitalio.DigitalInOut(pin)
 key_pin.direction = digitalio.Direction.INPUT
 key_pin.pull = digitalio.Pull.UP
 key_pin_array.append(key_pin)

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

print("Waiting for key pin...")

while True:
 # Check each pin
 for key_pin in key_pin_array:
 if not key_pin.value: # Is it grounded?
 i = key_pin_array.index(key_pin)
 print("Pin #%d is grounded." % i)

 # Turn on the red LED
 led.value = True

 while not key_pin.value:
 pass # Wait for it to be ungrounded!
 # "Type" the Keycode or string
 key = keys_pressed[i] # Get the corresponding Keycode or string
 if isinstance(key, str): # If it's a string...
 keyboard_layout.write(key) # ...Print the string
 else: # If it's not a string...
 keyboard.press(control_key, key) # "Press"...
 keyboard.release_all() # ..."Release"!

 # Turn off the red LED
 led.value = False

 time.sleep(0.01)

Connect pin A1 or A2 to ground, using a wire or alligator clip, then disconnect it to send the key press "A" or the string
"Hello world!"

This wiring example shows A1 and A2 connected to

ground.

Remember, on Trinket, A1 and A2 are labeled 2 and 0!

On other boards, you will have A1 and A2 labeled as

expected.

Create the Objects and Variables

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 158 of 179

https://learn.adafruit.com/assets/52710

First, we assign some variables for later use. We create three arrays assigned to variables: keypress_pins ,

key_pin_array , and keys_pressed . The first is the pins we're going to use. The second is empty because we're going

to fill it later. The third is what we would like our "keyboard" to output - in this case the letter "A" and the phrase, "Hello
world!". We create our last variable assigned to control_key which allows us to later apply the shift key to our

keypress. We'll be using two keypresses, but you can have up to six keypresses at once.

Next keyboard and keyboard_layout objects are created. We only have US right now (if you make other layouts

please submit a GitHub pull request!). The time.sleep(1) avoids an error that can happen if the program gets run as

soon as the board gets plugged in, before the host computer finishes connecting to the board.

Then we take the pins we chose above, and create the pin objects, set the direction and give them each a pullup.
Then we apply the pin objects to key_pin_array so we can use them later.

Next we set up the little red LED to so we can use it as a status light.

The last thing we do before we start our loop is print , "Waiting for key pin..." so you know the code is ready and

waiting!

The Main Loop

Inside the loop, we check each pin to see if the state has changed, i.e. you connected the pin to ground. Once it
changes, it prints, "Pin # grounded." to let you know the ground state has been detected. Then we turn on the red LED.
The code waits for the state to change again, i.e. it waits for you to unground the pin by disconnecting the wire
attached to the pin from ground.

Then the code gets the corresponding keys pressed from our array. If you grounded and ungrounded A1, the code
retrieves the keypress a , if you grounded and ungrounded A2, the code retrieves the string, "Hello world!"

If the code finds that it's retrieved a string, it prints the string, using the keyboard_layout to determine the keypresses.

Otherwise, the code prints the keypress from the control_key and the keypress "a", which result in "A". Then it calls

keyboard.release_all() . You always want to call this soon after a keypress or you'll end up with a stuck key which is

really annoying!

Instead of using a wire to ground the pins, you can try wiring up buttons like we did in CircuitPython Digital In &
Out (https://adafru.it/Beo). Try altering the code to add more pins for more keypress options!

CircuitPython Mouse Emulator

Copy and paste the code into code.py using your favorite editor, and save the file.

import time

import analogio
import board
import digitalio
import usb_hid
from adafruit_hid.mouse import Mouse

mouse = Mouse(usb_hid.devices)

x_axis = analogio.AnalogIn(board.A0)
y_axis = analogio.AnalogIn(board.A1)
select = digitalio.DigitalInOut(board.A2)
select.direction = digitalio.Direction.INPUT

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 159 of 179

file:///circuitpython-essentials/circuitpython-digital-in-out

select.direction = digitalio.Direction.INPUT
select.pull = digitalio.Pull.UP

pot_min = 0.00
pot_max = 3.29
step = (pot_max - pot_min) / 20.0

def get_voltage(pin):
 return (pin.value * 3.3) / 65536

def steps(axis):
 """ Maps the potentiometer voltage range to 0-20 """
 return round((axis - pot_min) / step)

while True:
 x = get_voltage(x_axis)
 y = get_voltage(y_axis)

 if select.value is False:
 mouse.click(Mouse.LEFT_BUTTON)
 time.sleep(0.2) # Debounce delay

 if steps(x) > 11.0:
 # print(steps(x))
 mouse.move(x=1)
 if steps(x) < 9.0:
 # print(steps(x))
 mouse.move(x=-1)

 if steps(x) > 19.0:
 # print(steps(x))
 mouse.move(x=8)
 if steps(x) < 1.0:
 # print(steps(x))
 mouse.move(x=-8)

 if steps(y) > 11.0:
 # print(steps(y))
 mouse.move(y=-1)
 if steps(y) < 9.0:
 # print(steps(y))
 mouse.move(y=1)

 if steps(y) > 19.0:
 # print(steps(y))
 mouse.move(y=-8)
 if steps(y) < 1.0:
 # print(steps(y))
 mouse.move(y=8)

For this example, we've wired up a 2-axis thumb joystick with a select button. We use this to emulate the mouse
movement and the mouse left-button click. To wire up this joytick:

Connect VCC on the joystick to the 3V on your board. Connect ground to ground.
Connect Xout on the joystick to pin A0 on your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 160 of 179

Connect Yout on the joystick to pin A1 on your board.
Connect Sel on the joystick to pin A2 on your board.

Remember, Trinket's pins are labeled differently. Check the Trinket Pinouts page (https://adafru.it/AMd) to verify your
wiring.

To use this demo, simply move the joystick around. The mouse will move slowly if you move the joystick a little off
center, and more quickly if you move it as far as it goes. Press down on the joystick to click the mouse. Awesome! Now
let's take a look at the code.

Create the Objects and Variables

First we create the mouse object.

Next, we set x_axis and y_axis to pins A0 and A1 . Then we set select to A2 , set it as input and give it a pullup.

The x and y axis on the joystick act like 2 potentiometers. We'll be using them just like we did in CircuitPython Analog
In (https://adafru.it/Bep). We set pot_min and pot_max to be the minimum and maximum voltage read from the

potentiometers. We assign step = (pot_max - pot_min) / 20.0 to use in a helper function.

CircuitPython HID Mouse Helpers

First we have the get_voltage() helper so we can get the correct readings from the potentiometers. Look familiar? We

learned about it in Analog In (https://adafru.it/Bep).

Second, we have steps(axis) . To use it, you provide it with the axis you're reading. This is where we're going to use

the step variable we assigned earlier. The potentiometer range is 0-3.29. This is a small range. It's even smaller with

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 161 of 179

file:///adafruit-trinket-m0-circuitpython-arduino/pinouts#unique-pad-capabilities
file:///circuitpython-essentials/circuitpython-analog-in
file:///circuitpython-essentials/circuitpython-analog-in#get-voltage-helper

the joystick because the joystick sits at the center of this range, 1.66, and the + and - of each axis is above and below
this number. Since we need to have thresholds in our code, we're going to map that range of 0-3.29 to while numbers
between 0-20.0 using this helper function. That way we can simplify our code and use larger ranges for our thresholds
instead of trying to figure out tiny decimal number changes.

Main Loop

First we assign x and y to read the voltages from x_axis and y_axis .

Next, we check to see when the state of the select button is False . It defaults to True when it is not pressed, so if the

state is False , the button has been pressed. When it's pressed, it sends the command to click the left mouse button.

The time.sleep(0.2) prevents it from reading multiple clicks when you've only clicked once.

Then we use the steps() function to set our mouse movement. There are two sets of two if statements for each axis.

Remember that 10 is the center step, as we've mapped the range 0-20 . The first set for each axis says if the joystick

moves 1 step off center (left or right for the x axis and up or down for the y axis), to move the mouse the appropriate
direction by 1 unit. The second set for each axis says if the joystick is moved to the lowest or highest step for each axis,
to move the mouse the appropriate direction by 8 units. That way you have the option to move the mouse slowly or
quickly!

To see what step the joystick is at when you're moving it, uncomment the print statements by removing the # from

the lines that look like # print(steps(x)) , and connecting to the serial console to see the output. Consider only

uncommenting one set at a time, or you end up with a huge amount of information scrolling very quickly, which can be
difficult to read!

For more detail check out the documentation at https://circuitpython.readthedocs.io/projects/hid/en/latest/�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 162 of 179

https://circuitpython.readthedocs.io/projects/hid/en/latest/

CircuitPython Storage

CircuitPython boards show up as as USB drive, allowing you to edit code directly on the board. You've been doing this
for a while. By now, maybe you've wondered, "Can I write data from CircuitPython to the storage drive to act as a
datalogger?" The answer is yes!

However, it is a little tricky. You need to add some special code to boot.py, not just code.py. That's because you have
to set the filesystem to be read-only when you need to edit code to the disk from your computer, and set it to writeable
when you want the CircuitPython core to be able to write.

The following is your new boot.py. Copy and paste the code into boot.py using your favorite editor. You may need to
create a new file.

import board
import digitalio
import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express
switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express
switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit
switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", switch.value)

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4 Express,
no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express, comment out switch = digitalio.DigitalInOut(board.D2) , and

uncomment switch = digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit, comment out switch =
digitalio.DigitalInOut(board.D2) , and uncomment switch = digitalio.DigitalInOut(board.D7) . Remember, D7 is the

onboard slide switch, so there's no extra wires or alligator clips needed.

The following is your new code.py. Copy and paste the code into code.py using your favorite editor.

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You cannot have
both write to the drive at the same time. (Bad Things Will Happen so we do not allow you to do it!)�

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the # +
space from the beginning of the line.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 163 of 179

import time

import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.D13)
led.switch_to_output()

try:
 with open("/temperature.txt", "a") as fp:
 while True:
 temp = microcontroller.cpu.temperature
 # do the C-to-F conversion here if you would like
 fp.write('{0:f}\n'.format(temp))
 fp.flush()
 led.value = not led.value
 time.sleep(1)
except OSError as e:
 delay = 0.5
 if e.args[0] == 28:
 delay = 0.25
 while True:
 led.value = not led.value
 time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch setup in your code is connected to a
ground pin. If it is, it changes the read-write state of the file system, so the CircuitPython core can begin logging the
temperature to the board.

For help finding the correct pins, see the wiring diagrams and information in the Find the Pins section of the
CircuitPython Digital In & Out guide (https://adafru.it/Bes). Instead of wiring up a switch, however, you'll be connecting
the pin directly to ground with alligator clips or jumper wires.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 164 of 179

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Once you copied the files to your board, eject it and unplug it from your computer. If you're using your Circuit
Playground Express, all you have to do is make sure the switch is to the right. Otherwise, use alligator clips or jumper
wires to connect the chosen pin to ground. Then, plug your board back into your computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console with ctrl+D or if you save a
file. You must EJECT the USB drive, then physically press the reset button!�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 165 of 179

This file gets updated once per second, but you won't see data come in live. Instead, when you're ready to grab the
data, eject and unplug your board. For CPX, move the switch to the left, otherwise remove the wire connecting the pin
to ground. Now it will be possible for you to write to the filesystem from your computer again, but it will not be logging
data.

We have a more detailed guide on this project available here: CPU Temperature Logging with
CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it out!

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 166 of 179

file:///cpu-temperature-logging-with-circuit-python

CircuitPython CPU
Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and nRF52840 chips. CircuitPython makes
it really simple to read the data from this sensor. This works on the Adafruit CircuitPython boards it's built into the
microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL. Plug in your board, connect to
the serial console (https://adafru.it/Bec), and enter the REPL (https://adafru.it/Awz). Then, enter the following commands
into the REPL:

import microcontroller
microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not exactly the ambient temperature and
it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32. It's super easy to do math using
CircuitPython. Check it out!

Note that the temperature sensor built into the nRF52840 has a resolution of 0.25 degrees Celsius, so any
temperature you print out will be in 0.25 degree increments.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 167 of 179

file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///welcome-to-circuitpython/the-repl

CircuitPython Expectations

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython

repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

Switching Between CircuitPython and Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between the two? Switching between
CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow the steps found in Welcome to
CircuitPython: Installing CircuitPython (https://adafru.it/Amd).

If you're currently running CircuitPython and would like to start using Arduino, plug in your board, and then load your
Arduino sketch. If there are any issues, you can double tap the reset button to get into the bootloader and then try
loading your sketch. Always backup any files you're using with CircuitPython that you want to save as they could be
deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-Express Boards

We often reference "Express" and "Non-Express" boards when discussing CircuitPython. What does this mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides you with extra space for

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 168 of 179

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

CircuitPython and your code. This means that we're able to include more functionality in CircuitPython and you're able
to do more with your code on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0 Express, Metro M0 Express and
Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, Feather M0 Basic, and other non-Express Feather M0 variants.

Non-Express Boards: Gemma and Trinket

CircuitPython runs nicely on the Gemma M0 or Trinket M0 but there are some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support for hardware
audio playpack or NVM 'eeprom'. Modules audioio and bitbangio are not included. For that support, check out the

Circuit Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out, digital IO, logging storage, and HID
do work! Check the CircuitPython Essentials for examples of all of these.

Differences Between CircuitPython and MicroPython

For the differences between CircuitPython and MicroPython, check out the CircuitPython
documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and Python

Python (also known as CPython) is the language that MicroPython and CircuitPython are based on. There are many
similarities, but there are also many differences. This is a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard libraries are included. Unfortunately,
for space reasons, many Python libraries are not available. So for instance while we wish you could import numpy ,

numpy isn't available. So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of unlimited size are not supported. The
largest positive integer that can be represented is 2 -1, 1073741823, and the most negative integer possible is -2 , -
1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as in Python). The largest floating
point magnitude that can be represented is about +/-3.4e38. The smallest magnitude that can be represented with full

30 30

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 169 of 179

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython

accuracy is about +/-1.7e-38, though numbers as small as +/-5.6e-45 can be represented with reduced accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like regular single precision floating
point), which is about five or six decimal digits of precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can look at the MicroPython
documentation. We keep up with MicroPython stable releases, so check out the core 'differences' they document
here. (https://adafru.it/zwA)

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 170 of 179

http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Software Resources

To help you get your Bluefruit LE module talking to other Central devices, we've put together a number of open source
tools for most of the major platforms supporting Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries

Adafruit has put together the following mobile or desktop apps and libraries to make it as easy as possible to get your
Bluefruit LE module talking to your mobile device or laptop, with full source available where possible:

Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3 (though it was only really stable starting
with 4.4), and we've already released Bluefruit LE Connect to the Play Store (https://adafru.it/f4G).

The full source code (https://adafru.it/fY9) for Bluefruit LE Connect for Android is also available on Github to help you
get started with your own Android apps. You'll need a recent version of Android Studio (https://adafru.it/fYa) to use this
project.

Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS version of the Bluefruit LE
Connect (https://adafru.it/f4H) app available in Apple's app store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github. You'll need XCode and access to
Apple's developper program to use this project:

Version 1.x source code: https://github.com/adafruit/Bluefruit_LE_Connect (https://adafru.it/ddv)
Version 2.x source code: https://github.com/adafruit/Bluefruit_LE_Connect_v2 (https://adafru.it/o9E)

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS X command-line tools in a
single codebase.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 171 of 179

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://github.com/adafruit/Bluefruit_LE_Connect_Android
https://developer.android.com/sdk/index.html
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)

This OS X desktop application is based on the same V2.x codebase as the iOS app, and gives you access to BLE
UART, basic Pin I/O and OTA DFU firmware updates from the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON or XML file for parsing in another
application, and uses the native hardware on your computer so no BLE dongle is required on any recent mac.

The full source is also available on Github (https://adafru.it/o9E).

Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)

This experimental command line tool is unsupported and provided purely as a proof of concept, but can be used to
allow firmware updates for Bluefruit devices from the command line.

This utility performs automatic firmware updates similar to the way that the GUI application does, by checking the
firmware version on your Bluefruit device (via the Device Information Service), and comparing this against the firmware
versions available online, downloading files in the background if appropriate.

Simply install the pre-compiled tool via the DMG file (https://adafru.it/pLF) and place it somewhere in the system path,
or run the file locally via './bluefruit' to see the help menu:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 172 of 179

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Bluefruit_LE_Connect_v2
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3

$./bluefruit
bluefruit v0.3
Usage:
 bluefruit <command> [options...]

Commands:
 Scan peripherals: scan
 Automatic update: update [--enable-beta] [--uuid <uuid>]
 Custom firmware: dfu --hex <filename> [--init <filename>] [--uuid <uuid>]
 Show this screen: --help
 Show version: --version

Options:
 --uuid <uuid> If present the peripheral with that uuid is used. If not present a list of
peripherals is displayed
 --enable-beta If not present only stable versions are used

Short syntax:
 -u = --uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? = --help

Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)

This native OS X application is a basic proof of concept app that allows you to connect to your Bluefruit LE module
using most recent macbooks or iMacs. You can get basic information about the modules and use the UART service to
send and receive data.

The full source for the application is available in the github repo at Adafruit_BluefruitLE_OSX (https://adafru.it/mCo).

ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)

ABLE (https://adafru.it/ijB) (Adafruit Bluefruit LE Desktop) is a cross-platform desktop application based on Sandeep
Misty's noble library (https://adafru.it/ijC) and the Electron (https://adafru.it/ijD) project from Github (used by Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally). Windows 7 support is particularly
interesting since Windows 7 has no native support for Bluetooth Low Energy but the noble library talks directly to
supported Bluetooth 4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this stage it's still

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 173 of 179

https://itunes.apple.com/us/app/bluefruit-buddy/id1042412646?mt=12
https://github.com/adafruit/Adafruit_BluefruitLE_OSX
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/sandeepmistry/noble
https://github.com/atom/electron
https://www.adafruit.com/products/1327

in early BETA and drops the connection and takes more care to work with).

This app allows you to collect sensor data or perform many of the same functionality offered by the mobile Bluefruit LE
Connect apps, but on the desktop.

The app is still in BETA, but full source (https://adafru.it/ijE) is available in addition to the easy to use pre-compiled
binaries (https://adafru.it/ijB).

Bluefruit LE Python Wrapper (https://adafru.it/fQF)

As a proof of concept, we've played around a bit with getting Python working with the native Bluetooth APIs on OS X
and the latest version of Bluez on certain Linux targets.

There are currently example sketches showing how to retreive BLE UART data as well as some basic details from the
Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a recent Macbook or a Raspberry
Pi and know Python, you might want to look at Adafruit_Python_BluefruitLE (https://adafru.it/fQF) in our github account.

Debug Tools

If your sense of adventure gets the better of you, and your Bluefruit LE module goes off into the weeds, the following
tools might be useful to get it back from unknown lands.

AdaLink (https://adafru.it/fPq) (Python)

These debug tools are provided purely as a convenience for advanced users for device recovery purposes,
and are not recommended unless you're OK with potentially bricking your board. Use them at your own risk.�

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 174 of 179

https://github.com/adafruit/adafruit-bluefruit-le-desktop
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Adalink

This command line tool is a python-based wrapper for programming ARM MCUs using either a Segger J-
Link (https://adafru.it/fYU) or an STLink/V2 (https://adafru.it/ijF). You can use it to reflash your Bluefruit LE module using
the latest firmware from the Bluefruit LE firmware repo (https://adafru.it/edX).

Details on how to use the tool are available in the readme.md file on the main
Adafruit_Adalink (https://adafru.it/fPq) repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four files, and would look something like
this (using a JLink):

adalink nrf51822 --programmer jlink --wipe
 --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"
 --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex"
 --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signatu
re.hex"

You can also use the AdaLink tool to get some basic information about your module, such as which SoftDevice is
currently programmed or the IC revision (16KB SRAM or 32KB SRAM) via the --info command:

$ adalink nrf51822 -p jlink --info
Hardware ID : QFACA10 (32KB)
Segger ID : nRF51822_xxAC
SD Version : S110 8.0.0
Device Addr : **:**:**:**:**:**
Device ID : ****************

Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash boards as they go through the test
procedures and off the assembly line, or just testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use this command line tool to flash your
nRF51822 with a specific SoftDevice, Bootloader and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO on a Raspberry
Pi (https://adafru.it/fVL) if you don't have access to a traditional ARM SWD debugger. (A pre-built version of OpenOCD
for the RPi is included in the repo since building it from scratch takes a long time on the original RPi.)

We don't provide active support for this tool since it's purely an internal project, but made it public just in case it might
help an adventurous customer debrick a board on their own.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 175 of 179

https://www.adafruit.com/search?q=J-Link
https://www.adafruit.com/product/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_nRF51822_Flasher
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements

$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --bootloader=2 --firmware=0.6.7
jtag : jlink
softdevice : 8.0.0
bootloader : 2
board : blefriend32
firmware : 0.6.7
Writing Softdevice + DFU bootloader + Application to flash memory
adalink -v nrf51822 --programmer jlink --wipe --program-hex
"Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --
program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signatu
re.hex"
...

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 176 of 179

Downloads

Files:

Adafruit_nRF52_Arduino (https://adafru.it/vaF): The core code for this device (hosted on Github)
nRF52 Example Sketches (https://adafru.it/vaK): Browse the example code from the core repo on Github
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/ImA)
EagleCAD PCB files on GitHub (https://adafru.it/IBX)
3D Models on GitHub (https://adafru.it/ItD)

Module Details

The Bluefruit nRF52840 Feather Express uses the MDBT50Q module from Raytac. Details on the module, including
FCC and other certifications are available in the document below:

https://adafru.it/ImC

https://adafru.it/ImC

Schematic

Click on the image for full-size versions.

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 177 of 179

https://github.com/adafruit/Adafruit_nRF52_Arduino
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ItsyBitsy%20nRF52840.fzpz
https://github.com/adafruit/Adafruit-ItsyBitsy-nRF52840-Express-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4481%20ItsyBitsy%20nRF52840
https://cdn-learn.adafruit.com/assets/assets/000/087/067/original/Raytac_MDBT50Q.pdf?1579288291

Board Design

The board files are available on Github (https://adafru.it/ImB), and the board has the following physical layout:

© Adafruit Industries https://learn.adafruit.com/adafruit-itsybitsy-nrf52840-express Page 178 of 179

https://github.com/adafruit/Adafruit-ItsyBitsy-nRF52840-PCB

© Adafruit Industries Last Updated: 2020-01-27 03:54:22 PM UTC Page 179 of 179

	Guide Contents
	Overview
	Pinouts
	Power Pins
	Adafruit LiIon/LiPoly Backpack Add-On for Pro Trinket/ItsyBitsy

	Analog Inputs
	PWM Outputs
	I2C Pins
	Logic pins
	Special GPIO

	QSPI Flash and DotStar
	Other Pins
	Arduino Support Setup
	1. BSP Installation
	Recommended: Installing the BSP via the Board Manager

	2. LINUX ONLY: adafruit-nrfutil Tool Installation
	3. Update the bootloader (nRF52832 ONLY)
	Advanced Option: Manually Install the BSP via 'git'
	Adafruit nRF52 BSP via git (for core development and PRs only)

	Arduino Examples
	Arduino Bluefruit nRF52 API
	nRF52 ADC
	Analog Reference Voltage
	Analog Resolution
	Default ADC Example (10-bit, 3.6V Reference)
	Advanced Example (12-bit, 3.0V Reference)
	FAQs
	What are the differences between the nRF51 and nRF52 Bluefruit boards? Which one should I be using?
	Can I run nRF51 Bluefruit sketches on the nRF52?
	Can I use the nRF52 as a Central to connect to other BLE peripherals?
	How are Arduino sketches executed on the nRF52? Can I do hard real time processing (bit-banging NeoPixels, Software Serial etc.)?
	Can I use GDB to debug my nRF52?
	Are there any other cross platform or free debugging options other than GDB?
	Can I make two Bluefruit nRF52's talk to each other?
	On Linux I'm getting 'arm-none-eabi-g++: no such file or directory', even though 'arm-none-eabi-g++' exists in the path specified. What should I do?
	what should I do when Arduino failed to upload sketch to my Feather ?
	If you get this error:

	Do Feather/Metro nRF52832 and nRF52840 support BLE Mesh ?
	Unable to upload sketch/update bootloader with macOS

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	Installing Mu Editor
	Download and Install Mu
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What if I don't have the loop?

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files

	Copying Libraries to Your Board
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	Frequently Asked Questions
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	Advanced Serial Console on Windows
	Windows 7 Driver
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac and Linux
	What's the Port?
	Connect with screen
	Permissions on Linux
	Uninstalling CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Space-Saving Tips

	Getting Started with BLE and CircuitPython
	Guides
	CircuitPython Essentials
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Find the pins!
	Read the Docs

	CircuitPython Analog In
	Creating the analog input
	get_voltage Helper
	Main Loop
	Changing It Up
	Wire it up

	Reading Analog Pin Values
	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop
	Find the pin

	CircuitPython PWM
	PWM with Fixed Frequency
	Create a PWM Output
	Main Loop
	PWM Output with Variable Frequency
	Wire it up
	Where's My PWM?

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Internal RGB LED
	Create the LED
	Brightness
	Main Loop
	Making Rainbows (Because Who Doesn't Love 'Em!)
	Circuit Playground Express Rainbow

	CircuitPython NeoPixel
	Wiring It Up
	The Code
	Create the LED
	NeoPixel Helpers
	Main Loop
	NeoPixel RGBW
	Read the Docs

	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard and Mouse
	CircuitPython Keyboard Emulator
	Create the Objects and Variables
	The Main Loop

	CircuitPython Mouse Emulator
	Create the Objects and Variables
	CircuitPython HID Mouse Helpers
	Main Loop

	CircuitPython Storage
	Logging the Temperature

	CircuitPython CPU Temp
	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma and Trinket
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	Software Resources
	Bluefruit LE Client Apps and Libraries
	Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)
	Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

	Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)
	Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)
	Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)
	ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)
	Bluefruit LE Python Wrapper (https://adafru.it/fQF)

	Debug Tools
	AdaLink (https://adafru.it/fPq) (Python)
	Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

	Downloads
	Files:

	Module Details
	Schematic
	Board Design

