ﬁ adafruit learning system

Adafruit AirLift - ESP32 WiFi Co-Processor Breakout

ﬁ adafruit learning system
Overview

Give your plain ol' microcontroller project a /ift with the Adafruit AirLift - a breakout board that lets you use the powerful
ESP32 as a WiFi co-processor. You probably have your favorite microcontroller (like the ATmega328 or ATSAMD51),
awesome peripherals and lots of libraries. But it doesn't have WiFi built in! So lets give that chip a best friend, the
ESP32. This chip can handle all the heavy lifting of connecting to a WiFi network and transferring data from a site, even
if its using the latest TLS/SSL encryption (it has root certificates pre-burned in).

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket data, or compile
in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz SPI for high speed data
transfer. You can use 3V or 5V Arduino, any chip from the ATmega328 or up, although the '328 will not be able to do
very complex tasks or buffer a lot of data. It also works great with CircuitPython, a SAMD51/Cortex M4 minimum
required since we need a bunch of RAM. All you need is an SPI bus and 2 control pins plus a power supply that can
provide up to 250mA during WiFi usage.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 3 of 36

cia-f;uu
N GND
O (

3Uo SCK

We placed an ESP32 module on a PCB with level shifting circuitry, a 3.3V regulator, and a tri-state chip for MOSI so you
can share the SPI bus with other devices. Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-
processor firmware that you can use in CircuitPython to use this into a WiFi co-processsor over SPI + 2

pins (https://adafru.it/Evl). We also toss in some header so you can solder it in and plug into a solderless breadboard.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works great! (https://adafru.it/E70) At this
time connection to Enterprise WiFi is not yet supported.

O

O

[T=)

]

WE336755
GC-2X94V-0

AirLift

ESP32 WiFi
Co-Processor
SPI Interface

Vin/Logic: 3-5V0C
O00000000O0O0

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 4 of 36

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/nina-fw

ﬁ adafruit learning system

Pinouts
i .
| B
i B B
¢}
i n 1
A
e |
= I
4]
4
| @
L
R
|
o)
E = @ '@ = i
ﬁdaﬂ'un F’uerft LhF
Ug O GND 0”800 800
3Vo SCK MOSI BUSY GP@
Adafruit AirLift
ESP32 WIF1 Co-Processor Breakout Board
Built-in level shifter (3.3 or 5v)
L: 33.0mm/1.3%
W: 31.8mm/1.25" 1. Used to put ESP32 into bootloading mode, or when acting
H: 4.8mm/0.2" as a server to identify when data is ready for reading.
2. Set low to reset anytime it gets into a locked up state.
3. Required, used to identify that it's ready for more commands.
E Serial Data Out Only‘lmsed‘ror DOOHDJBUIH;! i
; Serial Data In ﬂlkcnnnﬂrile':;.;':mﬁ:leuse i
SPI Clock
. SPIMISO
& E! SPI MOSI *
el -
[=] 3 https://www.adafruit.com/product/4201 My_‘!
Power Pins

Starting from the left are the power in/out pins.

The ESP32 chip can use a lot of power when transmitting. Make sure your power source can handle up to

250mA spikes of current during transmits!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 5 of 36

® VIN - This is the power input. Can be 3.3-5VDC, USE A POWER SOURCE THAT CAN HAPPILY SUPPLY 250mA,
we will regulate this down to 3.3V safely! This is probably a VBAT or USB pin not a 3.3V regulated output.

® 3vo - The output from the onboard 3.3V regulator, you can use up to Y50mA for other devices if you want to
power them from the same chip

® GND - Power and logic ground.

SPI & Control Pins

To keep transfers speedy, we use SPI not UART Serial. Serial is too slow and hard to synchronize. This uses more pins
but the experience is much better!

Classic SPI Pins:

® SCK - SPI Clock from your microcontroller, level shifted so can be 3-5V logic

® MISO - SPI Data from the AirLift to the microcontroller, this is 3.3V logic out, can be read by 3-5V logic. This is tri-
stated when not selected, so you can share the SPI bus with other devices.

® MOSI- SPI Data to the AirLift from the microcontroller, level shifted so can be 3-5V logic

® CS - SPI Chip Select from the microcontroller to start sending commands to the AirLift, level shifted so can be 3-
5V logic

Required Control Pins:

® BUSY - this pin is an input from the AirLift, it will let us know when its ready for more commands to be sent. This
is 3.3V logic out, can be read by 3-5V logic. This pin mustbe connected.

® IRESET - this pin is an output to the AirLift. Set low to put the AirLift into reset. You should use this pin, even
though you might be able to run for a short while without it, it's essential to 'kick' the chip if it ever gets into a
locked up state. Level shifted so can be 3-5V logic

Optional Control Pins:

® GPO - this is the ESP32 GPIOO pin, which is used to put it into bootloading mode. It is also used if you like when
the ESP32 is acting as a server, to let you know data is ready for reading. It's not required, so you can leave it
disconnected.

® RXI & TXO - Serial data in and Serial data out, used for bootloading new firmware only. Leave disconnected
when not uploading new WiFi firmware to the AirLift (which is a rare occurance)

LEDs

There are 3 very tiny red, green and blue LEDs to the left of the ESP32, these are available in the Arduino library if
you'd like to PWM them for a visual alert.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 6 of 36

* adafruit learning system
Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 7 of 36

https://learn.adafruit.com/assets/74758

Add the breakout board:

Place the breakout board over the pins so that the short
pins poke through the breakout pads

And Solder!
Be sure to solder all 12 pins for reliable electrical
contact.

(For tips on soldering, be sure to check out our Guide to

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 8 of 36

https://learn.adafruit.com/assets/74759
https://learn.adafruit.com/assets/74760
https://learn.adafruit.com/assets/74761
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 9 of 36

https://learn.adafruit.com/assets/74768
https://learn.adafruit.com/assets/74769
https://learn.adafruit.com/assets/74770

You're done! Check your solder joints visually and
continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 10 of 36

https://learn.adafruit.com/assets/74771
https://learn.adafruit.com/assets/74772

ﬁ adafruit learning system
CircuitPython

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

|:| The ESP32SPI library requires an M4 or better microcontroller! The MO will not work.

CircuitPython Microcontroller Wiring

First, wire up your AirLift as follows. The following example shows it wired to a Feather M4 using SPI:

Board VIN to Feather USB
Board GND to Feather GND
Board SCK to Feather SCK
Board MISO to Feather MI
Board MOSI to Feather MO
Board CS to Feather D10
Board BUSY to Feather D9
Board IRST to Feather D6

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your CircuitPython board.
First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.
Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).
You can manually install the necessary libraries from the bundle:

® adafruit_esp32spi.mpy

® adafruit_requests.mpy

® adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi.mpy, and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.
CircuitPython Usage

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 11 of 36

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/assets/74334
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit esp32spi import adafruit esp32spi
import adafruit esp32spi.adafruit esp32spi requests as requests

print("ESP32 SPI hardware test")
esp32 cs = DigitalInOut(board.D10)

esp32 ready = DigitalInOut(board.D9)
esp32 reset = DigitalInOut(board.D7)

spi busio.SPI(board.SCK, board.MOSI, board.MISO)

esp

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

print("Done!")

Connect to the serial monitor to see the output. It should look something like the following:

adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

Make sure you see the same output! If you don't, check your wiring. Once you've succeeded, continue onto the next

page!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout

Page 12 of 36

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 13 of 36

ﬁ adafruit learning system
Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board connected to the Internet.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people
accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a
secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main
project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
'ssid' : 'home ssid',
'password' : 'my password',
'timezone' : "America/New York", # http://worldtimeapi.org/timezones
'github token' : 'fawfj23rakjnfawiefa',
"hackaday token' : 'h4xx@rs3kret',
}

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say 'ssid') and
then a colon to separate it from the entry key 'home ssid' and finally a comma,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may need more
tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing github or
the hackaday API. Other non-secret data like your timezone can also go here, just cause its called secrets doesn't
mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and remember that if
your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington

DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the Requests modules.
First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great page on

how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 14 of 36

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_bus_device
adafruit_esp32_spi
adafruit_requests
neopixel

Before continuing make sure your board's lib folder or root filesystem has the above files copied over.
Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

print("ESP32 SPI webclient test")

TEXT _URL "http://wifitest.adafruit.com/testwifi/index.html"
JSON URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

requests.set socket(socket, esp)

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
except RuntimeError as e:
print("could not connect to AP, retrying:
continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print("IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com")))

Nnrint/("Dina AannAalAa Fram: 0d me" © Aen ninallananlaA ~ami))

,€)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 15 of 36

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

MILLy riiny yuuylLc.Luil. ou 1id 0 TONM.pMLIlY\ YuuyLT.Luill j)

#esp. debug = True

print("Fetching text from", TEXT URL)
r = requests.get(TEXT URL)
print('-'*40)

print(r.text)

print('-'*40)

r.close()

print()

print("Fetching json from", JSON URL)
r = requests.get(JSON URL)
print('-"'*40)

print(r.json())

print('-'*40)

r.close()

print("Done!")

And save it to your board, with the name code.py .

|:| This first connection example doesn't use a secrets file - you'll hand-enter your SSID/password to verify

connectivity first!

Then go down to this line

esp.connect AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
and change MY_SSID_NAME and MY_SSID PASSWORD to your access point name and password, keeping them

within the " quotes. (This example doesn't use the secrets' file, but its also very stand-alone so if other things seem to
not work you can always re-load this. You should get something like the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 16 of 36

ER COME1 - PuTTY - O Py

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32 cs = DigitalInOut(board.ESP_CS)
esp32 ready = DigitalInOut(board.ESP BUSY)
esp32 reset = DigitalInOut(board.ESP RESET)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be using the
adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a little bit of a hack,
but it lets us use requests like CPython does.

requests.set socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 17 of 36

Performs a scan of all access points it can see and prints out the name and signal strength:

for ap in esp.scan networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi'l))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain name lookup and
ping google.com to check network connectivity (note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty ip(esp.ip address))
print("IP lookup adafruit.com: %s" % esp.pretty ip(esp.get host by name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB) device, we
can do a lot of neat tricks. Like for example we can implement an interface a lot like requests (https://adafru.it/E9o) -
which makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT URL)

r = requests.get(TEXT URL)

print('-"'*40)

print(r.text)

print('-"'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be easily queried
or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON URL = "http://api.coindesk.com/v1l/bpi/currentprice/USD.json"
print("Fetching json from", JSON URL)

r = requests.get(JSON URL)

print('-"'%*40)

print(r.json())

print('-"'%*40)

r.close()

Requests

We've written a requests-like (https://adafru.it/FpT) library for web interfacing
named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1 requests
without "crafting" them and provides helpful methods for parsing the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

adafruit requests usage with an esp32spi socket
import board

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 18 of 36

http://docs.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not esp.is connected:

t

ry:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')

except RuntimeError as e:

print("could not connect to AP, retrying: ",e)

continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON GET URL = "http://httpbin.org/get"
JSON _POST URL = "http://httpbin.org/post"

print("Fetching text from %s"%TEXT URL)
response = requests.get(TEXT URL)
print('-"'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

print("Fetching JSON data from %s"%JSON GET URL)
response = requests.get(JSON GET URL)
print('-"'*40)

print("JSON Response: ", response.json())
print('-"'%*40)
response.close()

data = '31F'

print("P0OSTing data to {0}: {1}".format(JSON POST URL, data))
respo
print('-"'%*40)

(
nse = requests.post(JSON POST URL, data=data)

json resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp['data'l)
print('-"'*40)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout

Page 19 of 36

response.close()

json data = {"Date" : "July 25, 2019"}

print("P0STing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)
print('-"'%*40)

json resp = response.json()

Parse out the 'json' key from json resp dict.

print("JSON Data received from server:", json resp['json'])
print('-"'*40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket and the
esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
except RuntimeError as e:
print("could not connect to AP, retrying: ",e)
continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

esp32 cs = DigitalInOut(board.D9)
esp32 ready = DigitalInOut(board.D10)
esp32 reset = DigitalInOut(board.D5)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website
- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 20 of 36

http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the response fromthe server into a
variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved the
server's response , we can read it back. Luckily for us, requests automatically decodes the server's response into
human-readable text, you can read it back by calling response.text.

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the response's
data.

print("Fetching text from %s"%TEXT URL)
response = requests.get(TEXT URL)
print('-'*40)

print("Text Response: ", response.text)
print('-"'*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute—value pairs.
CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted response
(instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict.

print("Fetching JSON data from %s"%JSON GET URL)
response = requests.get(JSON GET URL)
print('-"'%*40)

print("JSON Response: ", response.json())
print('-"'*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method, passing it a data value.

data = '31F'

print("P0STing data to {0}: {1}".format(JSON POST URL, data))
response = requests.post(JSON POST URL, data=data)
print('-"'*40)

json resp = response.json()

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp['data'])
print('-"'%*40)

response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 21 of 36

You can also post json-formatted data to a server by passing json data into the requests.post method.

json data = {"Date" : "July 25, 2019"}

print("P0STing data to {0}: {1}".format(JSON POST URL, json data))
response = requests.post(JSON POST URL, json=json data)
print('-"'*40)

json resp = response.json()

Parse out the 'json' key from json resp dict.
print("JSON Data received from server:", json resp['json'])
print('-"'%*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status code in your
CircuitPython code?

We've written an example to show advanced usage of the requests module below.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 22 of 36

import board

import busio

from digitalio import DigitalInOut

import adafruit esp32spi.adafruit esp32spi socket as socket
from adafruit esp32spi import adafruit esp32spi

import adafruit requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

spi
esp

print("Connecting to AP...")
while not esp.is connected:
try:
esp.connect AP(b'MY SSID NAME', b'MY SSID PASSWORD')
except RuntimeError as e:
print("could not connect to AP, retrying: ",e)
continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set socket(socket, esp)

JSON GET URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent" : "blinka/1.0.0"}

print("Fetching JSON data from %s..."%JSON GET URL)
response = requests.get(JSON GET URL, headers=headers)
print('-'*60)

json data = response.json()

headers = json data['headers']

print("Response's Custom User-Agent Header: {0}".format(headers['User-Agent']))
print('-"'*60)

Read Response's HTTP status code
print("Response HTTP Status Code:
print('-"'*60)

, response.status code)
Read Response, as raw bytes instead of pretty text
print("Raw Response: ", response.content)

Close, delete and collect the response data
response.close()

WiFi Manager

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 23 of 36

That simpletest example works but its a little finicky - you need to constantly check WiFi status and have many loops to
manage connections and disconnections. For more advanced uses, we recommend using the WiFiManager object. It
will wrap the connection/status/requests loop for you - reconnecting if WiFi drops, resetting the ESP32 if it gets into a
bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some extra headers:

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit esp32spi import adafruit esp32spi

from adafruit esp32spi import adafruit esp32spi wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:
from secrets import secrets

except ImportError:
print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP CS)

esp32 ready = DigitalInOut(board.ESP BUSY)

esp32 reset = DigitalInOut(board.ESP RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)

esp32 reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

"""Use below for Most Boards"""

status light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102 MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED

import adafruit rgbled

from adafruit esp32spi import PWMOut

RED LED = PWMOut.PWMOut(esp, 26)

GREEN LED = PWMOut.PWMOut(esp, 27)

BLUE LED = PWMOut.PWMOut(esp, 25)

status light = adafruit rgbled.RGBLED(RED LED, BLUE LED, GREEN LED)

wifi = adafruit esp32spi wifimanager.ESPSPI WiFiManager(esp, secrets, status light)

HoH K W R KR K H

counter = 0

while True:
try:
print("Posting data...", end='")
data = counter
feed = 'test'

payload = {'value':data}
response = wifi.post(

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 24 of 36

"https://io.adafruit.com/api/v2/"+secrets['aio username']+"/feeds/"+feed+"/data",
json=payload,
headers={"X-AIO-KEY":secrets['aio key'l})
print(response.json())
response.close()
counter = counter + 1
print("0K")
except (ValueError, RuntimeError) as e:
print("Failed to get data, retrying\n", e)
wifi.reset()
continue
response = None
time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32 object, secrets
and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the Adafruit IO
API:

® ajo_username
® aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file, which will
now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {

'ssid' : ' your ssid ‘',

'password' : ' your wifi password ',

'timezone' : "America/Los Angeles", # http://worldtimeapi.org/timezones
'aio username' : ' your aio username ',

'aio key' : ' your aio key ',

}

Next, set up an Adafruit 10 feed named test

® |f you do not know how to set up a feed, follow this page and come back when you've set up a feed named
test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit 10 without having to deal with connecting or initializing the
hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython board posts
data to it!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 25 of 36

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 26 of 36

ﬁ adafruit learning system
Arduino

You can use the AirLift with Arduino. Unlike CircuitPython, it work work with just about any Arduino chip, even a classic
Arduino UNO. However, if you want to use libraries like ArduinoJSON or add sensors and SD card, you'll really want an
ATSAMD21 (Cortex MO) or ATSAMD51 (Cortex M4), both of which have pl/enty or RAM

Arduino Wiring

We'll show wiring to the hardware SPI pins, since the library does not support software SPI at all. You will need female-
to-male header wires to get to these pins

LR)
L)
L)
L I)
L)

L I)
L)
L
L
L

fritzing
Connect:

e AirLift VIN to 5V power (even if you are on a 3V microcontroller, you'll need the current available from the 5V
power pin

AirLift GND to GND

AirLift SCK to the 6-pin SPI header SPI SCK

AirLift MOSI to the 6-pin SPI header SPI MOSI

AirLift MISO to the 6-pin SPI header SPI MISO

AirLift CS to digital 10 (you can change this later)

AirLift Busy to digital 7 (you can change this later)

AirLift Reset to digital 5 (you can change this later)

Library Install

We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team! The official
WIiFi101 library won't work because it doesn't support the ability to change the pins.

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 27 of 36

https://github.com/adafruit/WiFiNINA/archive/master.zip

https://adafru.it/Evm

Within the Arduino IDE, select Install library from ZIP...

| AirLift_Breakout | Arduino 1.85

File Edit |Sketch| Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
AirLift_J Uplead Using Programmer Ctrl+Shift+U
#inclu Export compiled Binary Ctrl+Alt+S
#inclu
#inclu Show Sketch Folder Ctrl+K
#incly Include Library fal
$incl Add File Manage Libraries...
inclyl

Add ZIP Library...

Arduino libraries

#include "ESP32BootROM.h"
#include "Rdafruit NeoPi KEV

#define ESP32_GPIOO 7
#define ESP32_RESETN 8
#define SPIWIFI RCE 9

ArduinoSound

AudicZero

ArduinoHttpClient

And select the zip you just downloaded.

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

I[File] Edit Sketch Tools Help

At the top you'll see a section where the GPIO pins are defined

MNew Ctrl+M
Open... Ctrl+ O
Open Recent
Sketchbook WiFi101 b
Examples WiFiNINA AP _SimpleWeb5Server
Close Crl+W RETIRED ConnectMoEncryption
save carl+S Bamples for Adafruit Metro Mé (SAM| | o ec VERWEP
Save As... Ctrl+Shift+S s ConnectWithWPA

. ScanMetworks
Page Setup Cirl+Shift+P SAMD_AnalogCorrection P —
Prin CtrkP EEIU SimpleWebServerWiFi
Preferences Ctrl+ Comma USBHost Tools
Quit Ctr+Q Wire WiFiChatServer

T T TR T T f WiFiPing

// Configure the pins used for the ESP32 connection
#define SPIWIFI SPIL // The SPI port

#define SPIWIFI_SS 10 // chip select pin
#define SPIWIFI_ACE 7 // a.k.a BUSY or EEADY pin
#define ESP32 RESETN 5 // Reset pin

#define ESP32 GPIO0 -1 // Not connected

If you don't see this, you may have the wrong WIFiNINA library installed. Uninstall it and re-install the Adafruit one as

© Adafruit Industries

https://learn.adafruit.com/adafruit-airlift-breakout

Page 28 of 36

above.

Compile and upload to your board wired up to the AirLift

WiFi Scanning test

MAC: C4:4F:33:0E:B0:BD
Scanning available networks...
*% Scan Networks %%

number of availakle networks:10

0) Adafruit Signal: -56 dBm Encryption: WPARZ
1) Comsulate Guest Signal: -58 dBm Encryption: WPARZ
2) consulatewireless Signal: -60 dBm Encryption: WPARZ
3) Adafruit Signal: -66 dBm Encryption: WPARZ
4) consulatewireless Signal: -67 dBm Encryption: WPARZ
3) Comsulate Guest Signal: -68 dBm Encryption: WPARZ
6) Adafruit Signal: -68 dBm Encryption: WPARZ
7) Comsulate Guest Signal: -71 dBm Encryption: WPARZ
8) consulatewireless Signal: -72 dBm Encryption: WPARZ

9) ESP_BBEFeC Signal: -73 dBm Encryption: None

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid 3-5VDC into Vin
in order for the ESP32 not to brown out.

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

Edit Sketch Tools Help
New Ctrl+N
Open... Ctrl+0
Open Recent D]
Sketchbook WiFINIMA AP _Simpl eWebSer\.r.er
T RETIRED ConnectMoEncryption
i . ConnectWithWEP
Close Ctrl+W Examples for Adafruit ItsyBitsy M4 (SAMDS1)
ConnectWithWPA
Save Ctrl+S s
. ScanMetworks
Save As... Ctrl+Shift+5 SAMD_AnalogCorrection
T ScanMetworksAdvanced
Page Setup Ctrl+Shift+P SimpleWebServerWiFi
. SPI
Print Ctrl+P iiooks »
USBHost -
Preferences Ctrl+ Comma Wire WiFiChatServer
WiFiPing
Quit Ctrl+Q Examples from Custom Libraries WiFiSSLClient
#define SPIWIFI_SS RS WiFiUdpNtpClient
#define SPIWIFI_ACK G A BT WiFilUdoSendRecejveString
| #define ESP32 RESETN Adafruit ADT/410 Library WiFiWebClient
#define ESP32_GFIOO Adafruit ADXL343 WIFIWebLlientRepeating
#endif Adafruit ADXL345 WiFiWebServer
A defen ARATME N

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the SSID/password to your
network.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 29 of 36

arduino_secrets.h

kdefine SECRET SSID "your wifi ssid"
#define SECRET PASS "your wifi password"

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go back, check
wiring, power and your SSID/password

Found firmware 1.3.0

Attempting to connect to SSID: Adafruit
Connected to wifi

SSID: Adafruit

IP Address: 10.0.1.179

signal strength (RS5SI):-44 dBm

Starting connection to server...
connected to server

HTTE/1.1 200 CK

Server: nginx/1.10.3 (Ubuntu)

Date: Wed, 10 &Zpr 2019 20:55:51 GMT
Content-Type: text/html
Content-Length: 73

Last-Modified: Thu, 16 Feb 2017 17:42:29 GMT
Connection: close

ETag: "5BaSe4B85-44"

Accept-Ranges: bytes

This is a test of the CC3000 module!

If you can read this, its working :)

disconnecting from server.

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL stack so you can
have that all taken care of for you. Here's an example of a secure WiFi connection:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 30 of 36

Edit Sketch Tools Help

Mew Ctrl+N
Open... Ctrl+O
Open Recent Te.rr?boo
Sketchbook WiFIL01
WiFiNINA AP_SimpleWebSenver
Examples)
Close CtrleW RETIRED ConnectMoEncryption
))) o ConnectWithWEP
Save Ctrl+5 Examples for Adafruit ItsyBitsy M4 (SAMDS51) i
SaveAs.. Ctrl+Shift+S s ConnectWithWPA
SO0 Al Bt ScanMetworks
. nalo orrection
Page Setup Ctrl+5Shift+P - . ScanMNetworksAdvanced
| . SDU
Print Ctrl+P - SimpleWebServerWiFi
Preferences Ctrl+Comma USBHost s g
o WiFiChatServer
Quit Ctrl+Q re WiFiPing
FUTIIOT OrIWICT =
#define SPIWIFI S5 Examples from Custom Libraries
|| #define SPIWIFI_ACK AccelStepper WiFiUdpNtpClient
#define ESP32 RESETN Adafruit ADSLX15 WiFiUdpSendReceiveString
#define ESP32_GPIOO Adafruit ADT7410 Library WiFiwebClient
#endif Adafruit ADXL343 WiFiWebClientRepeating
Adafruit ADXL345 WiFiWebServer
void s=tup() { Adafruit AM2315 H

Note we use WIiFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

= —
@ COM161 (Adafruit ItsyBitsy M4 (SAMD51))

nttempting to connect to S5ID: Rdafruit
Connected to wifi

55ID: Adafruit

IP Rddress: 10.0.1.179

signal strength (RS5S5I):-52 dBm

Starting connection to server...

connected to server

[HTTP/1.1 200 OK

cache-control: must-revalidate, max-age=e00
.cnntent—disposition: attachment; filename=json.json
content-type: application/json;charset=utf-8
expires: Wed, 10 Apr 2019 21:17:24 GMT
Mlast-modified: Wed, 10 Apr 2019 21:07:24 GMT
strict-transport-security: max-age=631138319
timing-allow-origin: *

Ix-connection—hash: ab527136393£alf3bb7779£53c657fae
Ix-content-type-options: nosniff

(|[x-frame-options: SAMECRIGIN

x-response—time: 12

x-xss-protection: 1; mode=block; report=https://twitter.com/i/xss_report
Content-Length: 197

[hccept-Ranges: bytes

j|Date: Wed, 10 Apr 2019 21:07:24 GMT

Via: 1.1 varnish

Bge: 0

llconnection: close

-Served-By: cache-bwib023-BWI

\[X-Cache: MISS

X-Timer: 51554930445.534606,V50,VEZS

Vary: Accept-Encoding

(|[{"following":false, "1d":"20731304", "screen _name":"adafruit”, "name":"adafruit industries", "proteg

disconnecting from server.
ead 958 bytes

4 0 3

[¥/] Autoscrol BothNL&CR v | [115200baud |

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout

Page 31 of 36

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON data. We'll use
ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data on the serial port
(which can then be re-directed to a display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo

Examples &
Close Ctrl+W ROt >
Save Crl+S WiFININA AP _SimpleWeb5erver
Save As Chrl+ Shift+S RETIRED ConnectNeEncryption
N o ConnectWithWEP
. amples for Adafruit ItsyBitsy
Page Setup Ctrl+5hift+P bs S ConnectWithWPA
Print Ctrl+P . 1SONdemo
SAMD_AnalogCorrection
Preferences Ctrl+Comma SDU ScanNetworks
SPI ScanMetworksAdvanced
Quit cr+Q SimpleWebServerWiFi
USBHost
BT B [

By default it will connect to to the Twitter banner image API, parse the username and followers and display them.

Attempting to connect to SSID: Adafruit
Connected to wifi

SSID: Adafruit

IP Address: 10.0.1.178

zignal strength (RSSI):-51 dEm

Starting connection to server...
connected to server

Eesponse:

Twitter username: adafruit
Twitter followers: 1592635

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples. The only change you'll want to
make is at the top of the sketches, add:

// Configure the pins used for the ESP32 connection

#if !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
// Don't change the names of these #define's! they match the variant ones
#define SPIWIFI SPI
#define SPIWIFI SS 10 // Chip select pin
#define SPIWIFI _ACK 7 // a.k.a BUSY or READY pin
#define ESP32 RESETN 5 // Reset pin
#define ESP32 _GPIOO® -1 // Not connected

#endif

And then before you check the status() of the module, call the function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK,
ESP32 RESETN, ESP32_GPIOO0, &SPIWIFI);

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 32 of 36

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

// check for the WiFi module:
WiFi.setPins(SPIWIFI SS, SPIWIFI ACK, ESP32 RESETN, ESP32 GPIOO, &SPIWIFI);
while (WiFi.status() == WL_NO_MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
delay(1000);
}

Of course you can adjust the pins and SPI port if you like!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 33 of 36

* adafruit learning system
Downloads

Files

® EagleCAD PCB Files on GitHub (https://adafru.it/Evh)
® Fritzing Object in the Adafruit Fritzing Library (https://adafru.it/Evi)

Schematic
1 z 3 Z 5 3
» : : E T ~
B A
L i g
o B ¢ B |
1 I : o
5 B
ESET L+ 4
»
c e o
~
7 b wa :
i 1 s ﬁadafruat 8
I : [AirLift Breakout rev B
3/27/13 5:23 PR [Sheet: 1/1
|Drawing: >AUTHOR | Adafruit Industries
i 2 3 a 5 5
Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 34 of 36

https://github.com/adafruit/Adafruit-AirLift-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20AirLift%20Breakout.fzpz

N R R N

f‘t,"‘"w"" fa T |

GND MISU

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-breakout Page 35 of 36

© Adafruit Industries Last Updated: 2019-07-29 04:59:42 PM UTC Page 36 of 36

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI & Control Pins
	LEDs
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	CircuitPython
	CircuitPython Microcontroller Wiring
	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Arduino
	Arduino Wiring
	Library Install
	First Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo
	Adapting Other Examples
	Downloads
	Files

	Schematic
	Fab Print

