
Adafruit AirLift FeatherWing - ESP32 WiFi Co-Processor
Created by Brent Rubell

Last updated on 2019-07-29 04:56:09 PM UTC

Overview

Give your Feather project a lift with the Adafruit AirLift FeatherWing - a FeatherWing that lets you use the powerful
ESP32 as a WiFi co-processor. You probably have your favorite Feather (like the Feather M4 (https://adafru.it/Cmy)) that
comes with its own set of awesome peripherals and lots of libraries. But it doesn't have WiFi built in! So lets give that
chip a best friend, the ESP32. This chip can handle all the heavy lifting of connecting to a WiFi network and transferring
data from a site, even if its using the latest TLS/SSL encryption (it has root certificates pre-burned in).

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket data, or compile
in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz SPI for high speed data
transfer. You can use 3V or 5V Arduino, any chip from the ATmega328 or up, although the '328 will not be able to do
very complex tasks or buffer a lot of data. It also works great with CircuitPython, a SAMD51/Cortex M4 minimum
required since we need a bunch of RAM. All you need is an SPI bus and 2 control pins plus a power supply that can
provide up to 250mA during WiFi usage.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 3 of 39

https://www.adafruit.com/product/3857
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361

We placed an ESP32 module on a FeatherWing with a separate 3.3V regulator, and a tri-state chip for MOSI so you can
share the SPI bus with other 'Wing. Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-
processor firmware that you can use in CircuitPython to use this into WiFi co-processsor over SPI + 2
pins (https://adafru.it/Evl). We also toss in some header so you can solder it in and plug into a doubler, but you can also
pick up a set of stacking headers to stack above/below your Feather.

We've tested this with all our Feathers and it should work just fine with them except the ESP8266 & ESP32 Feathers
(cause they already have WiFi!). For use in Arduino, the '328 and '32u4 you can do basic connectivity and data transfer
but they do not have a lot of RAM so we don't recommend them - use the M0, M4 or similar, for best results! For
CircuitPython use, a Feather M4 or nRF52840 works best - the M0 series does not have enough RAM in CircuitPython.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works great! (https://adafru.it/E7O)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 4 of 39

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/nina-fw

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 5 of 39

Pinouts

Power Pins

GND - Common power/logic ground.
BAT - Positive voltage from JST on Feather for an optional LiPo battery.
USB - Positive voltage to/from the Micro USB jack if connected.
EN - 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator
3V - this is the output from the 3.3V regulator. The regulator can supply 500mA peak but half of that is drawn by
the ESP32, and it's a fairly power-hungry chip. So if you need a ton of power for stuff like LEDs, motors, etc. Use
the USB or BAT pins, and an additional regulator

SPI and Control Pins

To keep transfers speedy, we use SPI not UART Serial. Serial is too slow and hard to synchronize. This uses more pins
but the experience is much better!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 6 of 39

Classic SPI Pins:

SCK - SPI Clock from your microcontroller, level shifted so can be 3-5V logic
MISO - SPI Data from the AirLift to the microcontroller, this is 3.3V logic out, can be read by 3-5V logic. This is tri-
stated when not selected, so you can share the SPI bus with other devices.
MOSI- SPI Data to the AirLift from the microcontroller, level shifted so can be 3-5V logic
ESPCS - SPI Chip Select from the microcontroller to start sending commands to the AirLift, level shifted so can be
3-5V logic

Required Control Pins:

ESPBUSY - this pin is an input from the AirLift, it will let us know when its ready for more commands to be sent.
This is 3.3V logic out, can be read by 3-5V logic. This pin must be connected.
ESPRST- this pin is an output to the AirLift. Set low to put the AirLift into reset. You should use this pin, even
though you might be able to run for a short while without it, it's essential to 'kick' the chip if it ever gets into a
locked up state. Level shifted so can be 3-5V logic

Optional Control Pins:

ESPGPIO0 - this is the ESP32 GPIO0 pin, which is used to put it into bootloading mode. It is also used if you like
when the ESP32 is acting as a server, to let you know data is ready for reading. It's not required, you'll need to
solder the pad on the bottom of the FeatherWing to connect it.
ESPRX & ESPTX - Serial data in and Serial data out, used for bootloading new firmware only. Leave disconnected
when not uploading new WiFi firmware to the AirLift (which is a rare occurance). You'll need to solder the two
pads on the bottom of the FeatherWing to use these pins.

RGB LED

There is a small RGB LED to the left of the ESP32. These RGB LEDs are available in the Arduino and CircuitPython
libraries if you'd like to PWM them for a visual alert. They're connected to the ESP32's pins 26 (Red), 25 (Green), and
27 (Blue).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 7 of 39

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 8 of 39

https://learn.adafruit.com/assets/76183

Add the FeatherWing:
Place the FeatherWing over the pins so that the short

pins poke through the two rows of breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out ourGuide to

Excellent Soldering (https://adafru.it/aTk)).

Start by soldering the first row of headers

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 9 of 39

https://learn.adafruit.com/assets/76184
https://learn.adafruit.com/assets/76185
https://learn.adafruit.com/assets/76186
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Now flip around and solder the other row completely

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 10 of 39

https://learn.adafruit.com/assets/76187
https://learn.adafruit.com/assets/76188

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 11 of 39

https://learn.adafruit.com/assets/76189
https://learn.adafruit.com/assets/76190
https://learn.adafruit.com/assets/76191

You're done!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 12 of 39

https://learn.adafruit.com/assets/76192

CircuitPython

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit CircuitPython
ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

CircuitPython Microcontroller Pinout

Since all CircuitPython-running Feathers follow the same pinout, you do not need to change any of the pins listed
below.

To use the ESP32's pins, copy the following lines into your code:

If you wish to use the ESP32's GPIO0 pin - solder the jumper on the back of the FeatherWing, highlighted in red.

Then, include the following code to use the pin:

CircuitPython Installation of ESP32SPI Library

You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your CircuitPython board.

The ESP32SPI library requires an M4 or better microcontroller! The M0 will not work.�

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

esp32_gpio0 = DigitalInOut(board.D10)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 13 of 39

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

adafruit_esp32spi.mpy
adafruit_requests.mpy
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi.mpy, and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

Connect to the serial monitor to see the output. It should look something like the following:

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 14 of 39

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout in the code
example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

If you can read the Firmware and MAC address but fails on scanning SSIDs, check your power supply, you
may be running out of juice to the ESP32 and it's resetting�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 15 of 39

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board connected to the Internet.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to avoid is people
accidentally sharing their passwords or secret tokens and API keys. So, we designed all our examples to use a
secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share your main

project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say 'ssid') and

then a colon to separate it from the entry key 'home ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may need more

tokens and keys, just add them one line at a time. See for example other tokens such as one for accessing github or
the hackaday API. Other non-secret data like your timezone can also go here, just cause its called secrets doesn't
mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and remember that if
your city is not listed, look for a city in the same time zone, for example Boston, New York, Philadelphia, Washington
DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the Requests modules.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great page on
how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the necessary libraries from the bundle:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 16 of 39

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_bus_device
adafruit_esp32_spi
adafruit_requests
neopixel

Before continuing make sure your board's lib folder or root filesystem has the above files copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print("IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 17 of 39

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

And save it to your board, with the name code.py .

Then go down to this line

esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

and change MY_SSID_NAME and MY_SSID_PASSWORD to your access point name and password, keeping them

within the '' quotes. (This example doesn't use the secrets' file, but its also very stand-alone so if other things seem to
not work you can always re-load this. You should get something like the following:

print("Ping google.com: %d ms" % esp.ping("google.com"))

#esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

print("Done!")

This first connection example doesn't use a secrets file - you'll hand-enter your SSID/password to verify
connectivity first!�

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 18 of 39

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

To use the AirLift FeatherWing's pins, replace the following lines into your code:

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be using the

adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a little bit of a hack,

but it lets us use requests like CPython does.

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

requests.set_socket(socket, esp)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 19 of 39

Verifies an ESP32 is found, checks the firmware and MAC address

Performs a scan of all access points it can see and prints out the name and signal strength:

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain name lookup and
ping google.com to check network connectivity (note sometimes the ping fails or takes a while, this isn't a big deal)

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB) device, we
can do a lot of neat tricks. Like for example we can implement an interface a lot like requests (https://adafru.it/E9o) -
which makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be easily queried
or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

Requests

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

 print("Connecting to AP...")
esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print("IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 20 of 39

http://docs.python-requests.org/en/master/

We've written a requests-like (https://adafru.it/FpT) library for web interfacing
named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1 requests
without "crafting" them and provides helpful methods for parsing the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

adafruit_requests usage with an esp32spi_socket
import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET_URL = "http://httpbin.org/get"
JSON_POST_URL = "http://httpbin.org/post"

print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 21 of 39

https://2.python-requests.org/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket and the

esp object.

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

response.close()

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 22 of 39

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website
- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server into a

variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved the
server's response , we can read it back. Luckily for us, requests automatically decodes the server's response into

human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the response's

data.

While some servers respond with text, some respond with json-formatted data consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted response
(instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method, passing it a data value.

esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

 print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

 print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 23 of 39

http://wifitest.adafruit.com/testwifi/index.html

You can also post json-formatted data to a server by passing json data into the requests.post method.

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status code in your
CircuitPython code?

We've written an example to show advanced usage of the requests module below.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 24 of 39

WiFi Manager

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent" : "blinka/1.0.0"}

print("Fetching JSON data from %s..."%JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print('-'*60)

json_data = response.json()
headers = json_data['headers']
print("Response's Custom User-Agent Header: {0}".format(headers['User-Agent']))
print('-'*60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print('-'*60)

Read Response, as raw bytes instead of pretty text
print("Raw Response: ", response.content)

Close, delete and collect the response data
response.close()

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 25 of 39

That simpletest example works but its a little finicky - you need to constantly check WiFi status and have many loops to
manage connections and disconnections. For more advanced uses, we recommend using the WiFiManager object. It
will wrap the connection/status/requests loop for you - reconnecting if WiFi drops, resetting the ESP32 if it gets into a
bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some extra headers:

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
 try:
 print("Posting data...", end='')
 data = counter
 feed = 'test'
 payload = {'value':data}
 response = wifi.post(

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 26 of 39

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when you've set up a feed named
test . (https://adafru.it/f5k)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32 object, secrets
and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the Adafruit IO
API:

aio_username
aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file, which will
now look something like this:

 "https://io.adafruit.com/api/v2/"+secrets['aio_username']+"/feeds/"+feed+"/data",
 json=payload,
 headers={"X-AIO-KEY":secrets['aio_key']})
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 27 of 39

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or initializing the
hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython board posts
data to it!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 28 of 39

Arduino

You can use the AirLift with Arduino. Unlike CircuitPython, it work work with just about any Arduino chip, even a classic
Arduino UNO. However, if you want to use libraries like ArduinoJSON or add sensors and SD card, you'll really want an
ATSAMD21 (Cortex M0) or ATSAMD51 (Cortex M4), both of which have plenty or RAM

Arduino Microcontroller Pin Definitions

Because each Feather uses a different processor, you'll need to include the following pin definitions to your code
depending on which board you are using:

Feather M0, M4, 32u4, or NRF52840

Feather 328P

Feather NRF52832

Note: These pin definitions leave the the ESP32's GPIO0 pin undefined (-1). If you wish to use this pin - solder the pad
on the bottom of the FeatherWing and set #define ESP32_GPIO0 to the correct pin for your microcontroller.

Library Install

We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team! The official
WiFi101 library won't work because it doesn't support the ability to change the pins.

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

 #define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 13 // Chip select pin
#define ESP32_RESETN 12 // Reset pin
#define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 10

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 4 // Chip select pin
#define ESP32_RESETN 3 // Reset pin
#define SPIWIFI_ACK 2 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 16 // Chip select pin
#define ESP32_RESETN 15 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 29 of 39

https://github.com/adafruit/WiFiNINA/archive/master.zip

https://adafru.it/Evm

Within the Arduino IDE, select Install library from ZIP...

And select the zip you just downloaded.

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

 (https://adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 30 of 39

 (https://adafru.it/EVv)

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it and re-install the Adafruit one as
above.

Compile and upload to your board wired up to the AirLift

 (https://adafru.it/EVw)

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid 3-5VDC
into Vin in order for the ESP32 not to brown out.

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 31 of 39

 (https://adafru.it/EVx)

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the SSID/password to your
network.

 (https://adafru.it/EVy)

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go back, check
wiring, power and your SSID/password

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 32 of 39

 (https://adafru.it/EVz)

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL stack so you can
have that all taken care of for you. Here's an example of a secure WiFi connection:

 (https://adafru.it/EVA)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 33 of 39

Note we use WiFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

 (https://adafru.it/EVB)

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON data. We'll
use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data on the serial
port (which can then be re-directed to a display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 34 of 39

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

Then load the example JSONdemo

 (https://adafru.it/EVC)

By default it will connect to to the Twitter banner image API, parse the username and followers and display them.

 (https://adafru.it/EVD)

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples. The only change you'll want to
make is at the top of the sketches, add:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 35 of 39

And then before you check the status() of the module, call the function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK,
ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);

 // Configure the pins used for the ESP32 connection
#if defined(ADAFRUIT_FEATHER_M4_EXPRESS) || \
 defined(ADAFRUIT_FEATHER_M0_EXPRESS) || \
 defined(ARDUINO_AVR_FEATHER32U4) || \
 defined(ARDUINO_NRF52840_FEATHER)
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 13 // Chip select pin
 #define ESP32_RESETN 12 // Reset pin
 #define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 10

#elif defined(ARDUINO_AVR_FEATHER328P)
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 4 // Chip select pin
 #define ESP32_RESETN 3 // Reset pin
 #define SPIWIFI_ACK 2 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1

#elif defined(ARDUINO_NRF52832_FEATHER)
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 16 // Chip select pin
 #define ESP32_RESETN 15 // Reset pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1

#elif defined(TEENSYDUINO)
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 5 // Chip select pin
 #define ESP32_RESETN 6 // Reset pin
 #define SPIWIFI_ACK 9 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
#endif

// check for the WiFi module:
 WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
 while (WiFi.status() == WL_NO_MODULE) {
 Serial.println("Communication with WiFi module failed!");
 // don't continue
 delay(1000);
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 36 of 39

Downloads

Files

ESP32 WROOM32 Datasheet (https://adafru.it/EVE)
EagleCAD files on GitHub (https://adafru.it/EVF)
Fritzing object in Adafruit Fritzing Library (https://adafru.it/EVG)
3D Models on GitHub (https://adafru.it/FcS)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 37 of 39

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://github.com/adafruit/Adafruit-AirLift-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20AirLift%20FeatherWing.fzpz
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4264%20AirLift%20FeatherWing

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-
processor-featherwing Page 38 of 39

© Adafruit Industries Last Updated: 2019-07-29 04:56:09 PM UTC Page 39 of 39

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI and Control Pins
	RGB LED

	Assembly
	Prepare the header strip:
	Add the FeatherWing:
	And Solder!

	CircuitPython
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Arduino
	Arduino Microcontroller Pin Definitions
	Feather M0, M4, 32u4, or NRF52840
	Feather 328P

	Feather NRF52832

	Library Install
	First Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo
	Adapting Other Examples

	Downloads
	Files
	Schematic
	Fab Print

